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Abstract—As chip multiprocessors keep increasing the number
of cores on the chip, the network-on-chip (NoC) technology is
becoming essential for interconnecting the cores. While NoCs
result in noticeable performance boost over conventional bus
systems, they consume a non-negligible fraction of the system
power. One promising solution is to dynamically adjust the
working frequencies/voltages of the switches as well as the links
between switches in the NoC to match the traffic flows. The
question is when to adjust and by how much. Most previous
works take a passive approach by reacting to fluctuations in
local traffic flows. Unfortunately, this approach may be too
slow and too conservative in adjusting the working frequen-
cies/voltages. Since applications often exhibit periodic behaviors,
we propose a hardware mechanism to proactively adjust the
frequencies/voltages of switches and/or links in NoC by predicting
the application runtime traffic. The evaluations show that our
design achieves 86% dynamic power savings of the links in the
on-chip network, and the resulting overheads from mispredictions
are tolerable.

Index Terms—Network-on-chip, low-power design, many-core,
end-to-end traffic prediction, power management, DVFS.

I. INTRODUCTION

As chip multiprocessors keep increasing the number of
cores on a chip, the network-on-chip (NoC) technology is
becoming essential to interconnect the cores. Examples include
Tilera’s TILE64, MIT’s Raw, and UT Austin’s TRIPS [1], [2],
[3]. As NoC occupies a substantial portion of the chip, the
power consumption and heat induced by NoC become non-
negligible. For example, in a previous study [2], the NoC of
the MIT Raw consumes 36% of the total chip power. The same
is true for the NoC of the Alpha 21364 processor [4], which
consumes about 18.4% of the total chip power. In an extreme
case [5], the power consumption of NoC may be more than
50% of the total chip power.

To solve the power consumption problem in NoC, previ-
ous works have proposed techniques such as dynamic volt-
age/frequency scaling (DVFS) to adjust the power mode of the
switches and links to match the traffic flows. The challenge
is to predict the traffic flowing through the switches and links
in the next time interval. For example, if a switch or a link
can be predicted to be idle for a while, then it can be set to a
low power mode [6], [7] by lowering its voltage or frequency.
Unfortunately, most previous works predict the traffic flows
by observing only the changes in the local states (recent
activities) of the switch or link, such as the fullness of the
packet buffers [8]. It may be too slow and too conservative

in adjusting the working frequencies/voltages, particularly for
sudden changes in traffic patterns.

What is required is a more aggressive and intelligent predic-
tion mechanism. The key is to trace back to the source of the
traffic in the NoC, i.e., the application. It is intuitive, and con-
firmed by many studies, that applications often run in phases
and exhibit repetitive behaviors, including communications
between parallel tasks or threads in the application [9], [10],
[11]. If the communication patterns can be captured and used
as clues for predicting the traffic through individual switches in
the NoC, then it is possible to adjust the frequencies/voltages
of the switches and links accordingly to minimize waste of
power.

According to this observation, in this paper we propose
a novel application-driven approach for predicting traffic in
NoC and performing DVFS on communication links. We
consider message-passing many-core architectures, in which
cores communicate with each other directly through explicit
message passing. The basic idea is to capture the communica-
tion patterns between parallel tasks, i.e., the end-to-end traffic,
by using a small table in the network interface (NI) of each
core to record the outgoing messages from that core. The novel
data structure is called the Application-driven Traffic Pattern
Table (ATPT). With the support of ATPTs, the amount of data
injected into the NOC from each core can be predicted.

Once the predictions are made, the utilization of each
individual link can also be derived. The voltage/frequency
(VF) level of the link can thus be adjusted proactively based
on the predicted link utilization. In comparison to previous
studies that make the DVFS decision based on the hardware
status, our approach uses the data transmission behavior of the
application as the VF scaling reference. The data transmission
behavior is a better guide, because it is more predictable and
the repetitive behavior exists in the execution phase.

To summarize, this paper makes the following specific
contributions:

• A table-based traffic predictor, ATPT, is proposed, which
can capture application traffic pattern at runtime.

• An NoC power management mechanism based on ATPT
is proposed that can reduce the waste of NoC power while
keeping the packet latency small.

• Three different strategies on DVFS in communication
links are proposed that satisfy different optimization
goals.

This paper is organized as follows: In Section II, a moti-
vating example is introduced to show the repetitive commu-
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nications behaviors in parallel applications. Section III gives
a formal definition of our problem. In Section IV, our traffic
prediction design is presented, followed by the mechanism
for adjusting the working frequency of the communication
links. Implementation considerations of our design are also
discussed. In Section VII, we evaluate the accuracy of our
predictor and the effects of different design parameters. The
efficiency of the resultant frequency scaling is also studied.
Related research works are discussed in Section VIII, followed
by the conclusion.

II. A MOTIVATING EXAMPLE

To motivate our discussions, let us consider the LU decom-
position from the SPLASH-2 benchmarks suite. The program
involves the decomposition of a given dense matrix to the
product of a lower and an upper triangular matrices. The
parallel program arranges the executing cores into a two-
dimensional grid, with each core handling one submatrix. Data
will be passed between cores along rows and columns of
the grid, and the data transmission behavior appears to have
repetitive patterns.

For this study, we use Tilera’s TILE64 [1], a message-
passing many-core system. The LU decomposition kernel was
ported to TILE64 and ran on a 4 × 4 tile array. The routing
algorithm is X-Y dimensional routing. The experiment setup is
described in detail in Section VII. In the following discussion,
we use the form of (source → destination) to describe the
transmission pairs. Figure 1 shows the data traffic trace of the
east port of router 4. The first diagram shows all the traffic
arriving at the east port of router 4. The other three diagrams
show the decomposed traffic. Note that the traffic relayed by
router 4 is omitted.

We can see from the first diagram that the input data
traffic of the east port of router 4 is actually a mix of all
traffic destined for router 4. The mixed traffic is irregular and
difficult to predict. If we use the traffic predictors proposed in
previous studies, which check only the hardware status, it is
impossible to make sensible predictions out of such irregular
traffic patterns. However, if we examine the end-to-end data
traffic of the pairs: (5 → 4), (6 → 4) and (7 → 4), as shown in
the remaining diagrams, they are more regular and predictable.
Each end-to-end data transmission above is issued by one of
the parallel threads of the running application, and it exhibits
some repetitive patterns in the observed time intervals.

By utilizing the repetitive characteristic of the end-to-end
data traffic, we can predict the data transmission accurately
using the recorded history. Once the traffic of all the trans-
mission pairs can be predicted, the total workload of any link
in the next time interval can be predicted by summing all the
predicted end-to-end data transmissions that pass through the
link.

III. PROBLEM FORMULATION

To simplify the discussion, we focus on message-passing
many-core architecture in this paper. The chip-multiprocessor
consists of M×M tiles arranged in a 2D M×M mesh such as
that in Tilera’s TILE64 [1]. Each tile contains a processor core,
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Fig. 1. The data traffic trace of the east port of router 4

a memory module, and a network router. Between each pair
of adjacent tiles, there are two uni-directional communication
links for sending and receiving data respectively. Each router
consists of at most five input ports and five output ports for the
north tile, east tile, west tile, south tile, and local processor.
This results in a 2D mesh NoC. Note that our solution is
not confined to 2D mesh and should be applicable to any
topology. The routing algorithm is assumed to be deterministic
X-Y routing, which is the most common routing algorithm in
the current NoC implementations.

We assume that each tile runs one task. This assumption can
be easily relaxed by duplicating the ATPT. Thus, the terms
tile and task will be used interchangeably in the following
discussions. Now consider a task i ∈ T in the system, where
T is the set of all tasks. Let commi be the set of tasks with
which i communicates, denoted as commi = {j|i → j}. Let
pt(j) be the function for predicting the traffic from task i to
task j at the t-th time interval, where j ∈ commi. Note that this
prediction function is for the end-to-end traffic between tiles
i and j. If the end-to-end traffic can be predicted accurately,
the workload of each link in the NoC can then be calculated
by layering all the end-to-end communication paths together
and its utilization can be predicted accordingly.

Given the utilization of a link for the next time interval, the
frequency/voltage of the link can be adjusted dynamically to
increase its power efficiency. A high link utilization indicates
that more data are transmitted through this link in the next
time interval. A higher frequency/voltage is thus needed for
the link to meet the throughput requirement. On the other hand,
a lower utilization means that the link remains idle most of
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Fig. 2. The high-level design of Application-driven Traffic Pattern Tables
(ATPTs), which track the amount of data transmitted in the past and predict
the amount of data to be transmitted later.

the time. Consequently, the link frequency and voltage can
be decreased to save power without significant performance
degradation.

Let E be the set of all the links in the NoC and ei ∈
E denote the i-th link. The utilization of ei at the t-th time
interval is defined as: Utili(t) =

Di(t)
δ×W , 0 ≤ Utili ≤ 1 , where

Di(t) denotes the total amount of data transmitted by ei in
the t-th time interval, δ is the period of time intervals, and
W is the maximum bandwidth of a communication link. Thus
δ×W denotes the maximum possible size of data transmitted
through a link in one time interval.

We assume that the communication links support DVFS and
can function at the maximum frequency of flink. The links
support N discrete frequency levels [9]. At the change of
the frequency, the voltage is also correspondingly scaled to
the lowest possible value. We use VF levels to describe the
possible power modes for the communication links.

From the above utilization function, we can see that if the
utilization of link ei at the t-th time interval can be predicted
correctly, then the most power-efficient frequency for that link
at the t-th time interval is OLi(t) = Utili(t)×flink. However,
since the link can only take N discrete VF levels, only the
VF level that has the minimum difference with OLi(t) can
be chosen. Let CLi(t) denote that VF level. The goal of our
dynamic power management is to minimize the difference be-
tween OLi(t) and CLi(t) throughout the application execution.

Assume that the total execution time of the application takes
H time intervals. The goal of our work is to minimize ∆i(t),
where: ∆i(t) = |OLi(t)− CLi(t)|, ∀ei ∈ E, ∀t ∈ H

IV. SYSTEM DESIGN OF ATPT

The ATPT is a two-level table for predicting the end-to-end
traffic between the local tile with other tiles in the next time
interval [11]. The design is inspired by the branch prediction.
Figure 2 shows the high level design. An ATPT sits besides
each network interface card (NIC) for monitoring the amount
of data transmitted out of the NIC in a time interval.

A. Basic Ideas

An ATPT supports two predictors, last value predictor
(LVP) and pattern-oriented predictor (POP), which are de-
signed for different purposes. Consider a tile i in the system.
Suppose that it has communications with another tile j, i.e.
i ∈ commi. The LVP predicts the amount of data to be

transmitted from tile i to tile j in the next time interval
based on the amount of data transmitted from i to j in the
last interval. The latter can be recorded easily with a counter
counteri,j . The LVP is usually accurate if the application has
a continuous behavior. On the other hand, the POP makes
predictions for the communication with another tile j based
on the communication patterns between tiles i and j in
the past. Different communication patterns result in different
predictions. To unify the two predictors, ATPT uses a selector
to decide which predictor to use at runtime.

Next, we describe how the communication patterns between
tiles i and j are tracked in POP. The idea is to track and record
the amount of data transmitted from i to j in the past l time
intervals. In other words, for each possible destination tile j,
we keep a vector of l elements, each recording the amount
of data transmitted to j in one of the last l time intervals.
Now, the amount of data may be large and it is difficult to
make a pattern out of the data sizes. Our idea is to quantize
the amounts according to the number of discrete VF levels,
N . For example, suppose that the maximum bandwidth of
each link is W bits/s, we use a quantizer G = W/5 bits/s
to discretize the communication amounts, and we track l = 5
time intervals. Thus, given the vector (5, 3, 1, 2, 4), the value 5
in the first element means that the amount of data transmitted
from tile i to j in five time intervals ago is between W
and 4W/5 bits/s. Similarly, the value 4 in the fifth element
indicates that the amount of data transmitted in the last interval
is between 4W/5 and 3W/5 bits/s. We say that (5, 3, 1, 2, 4)
is the communication pattern from tile i to j, denoted historyj
for tile i.

Given the communication pattern historyj , it can be used
to index a table tablej in tile i, in which each entry gives a
prediction value of the amount of data to be transmitted in
the next time interval. Actually, the value recorded in each
entry is the amount of data transmitted from tile i to j when
the corresponding communication pattern was encountered the
last time. Then, if the same communication pattern appears
again, the recorded value is used as the prediction value.

1) Design of Prediction Tables: As discussed above, ATPT
supports two predictors, LVP and POP. LVP only needs a
counter for each possible destination tile j to record the
amount of data transmitted from the local tile to that tile in
the last interval. On the other hand, POP needs to track the
communication pattern from tile i to j during the last l time
intervals. Combining the two, each entry in the ATPT thus has
a counter for recording the total size of data transmitted in the
current time interval and a set of l counters for tracking the
communication pattern. The communication pattern is used to
index a pattern history table. The pattern history table stores
the prediction for each corresponding communication pattern.

This essentially creates a two-level hierarchical table for
tracking and predicting the data transmissions. The first-level
table (L1-table) tracks all data transmissions injected by the lo-
cal processor, as shown in Figure 3. When the local processor
sends a message, the destination and size of the message are
recorded in the Destination and Data Size columns in the L1-
table, respectively. At the end of the time interval, the total
transmitted size is quantized according to the possible link
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Dest. LRU Data Size G4 G3 G2 G1 G0

5 0 256 5 3 1 2 4

8 2 128 3 3 0 3 3

10 1 512 2 2 2 2 2

13 3 64 5 4 3 5 4

index LRU Gp

54253 5 0

44044 13 4

… 13 4

53124 31 2

31263 12 2

G4 to G0 : the transmission history pattern 
Gp : the traffic we predict to transmit 

at the next time interval

Pattern history

Indexed by L1-table

Fig. 3. An example of an ATPT-based predictor. The columns G4 to G0

record the quantized size of transmitted data of the last 5 time intervals. L2-
table is indexed by the communication pattern (G4, G3, G2, G1, G0). The
value stored in the corresponding entry Gp is the predicted amount of data
to be transmitted in the next time interval.

frequency levels, and is then shifted G0. The original value
in G0 is shifted into G1 and so on. The data size counter
is then reset. Since a tile often communicates with a limited
number of tiles in one time interval, the number of rows for
the L1-table can be reduced using an LRU mechanism.

The communication pattern recorded in the L1-table is
next used to index the second-level table (L2-table) to obtain
the predicted amount of data to be transmitted in the next
time interval. As Figure 3 shows, the L2-table stores the
communication pattern (G5 : G0) and the predicted value Gp.
Let Qd be the number of levels to quantize the data size.
The maximum number of entries in the L2-table is thus Qdl .
Again, the size of the L2-table can be reduced by using the
LRU mechanism since the transmission behavior for a tile can
usually be covered by a limited number of patterns.

The two tables are updated at the end of each time interval.
The recorded data sizes in the L1-table are used to check the
correctness of the prediction made at the last time interval. If
the prediction was wrong, the value of Gp at the L2-table for
the corresponding communication pattern will be updated to
the data size recorded in the L1-table. If the communication
pattern cannot be found in the L2-table, the system will either
create a new entry or replace the existing entry by LRU in
the L2-table, and use the last value (G0) as the predicted data
size to be transmitted.

B. Design of Selector for Predictors

ATPT supports two predictors. When predicting the traffic
from tile i to j ∈ commi, the predicting function is defined as:

pt(j) =

{
ct−1(j), s(j) = 0;
tablej(historyj), s(j) = 1.

where pt(j) is the prediction for the traffic from tile i to tile
j, and ct(j) be the actual amount of communication from i to
j. The prediction either comes from LVP or POP, determined
by a selector function s. The selector function can be different
according to the system requirements. In this paper, we use a
2-bit saturating counter.

As Figure 4 shows, the 2-bit saturating counter changes its
state according to the prediction results. While the LVP suffers
from a high prediction error rate, the 2-bit saturating counter
gradually changes its state and finally switches to the POP.
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Fig. 4. State diagram of a 2-bit saturating counter
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Fig. 5. A DVFS-enabled on-chip interconnection link

V. LINK-DVFS BY ATPT-BASED PREDICTOR

In this section, we discuss how to adjust the fre-
quency/voltage of a link if the utilization of the link for
the next time interval can be predicted. To support link-level
DVFS, we use the on-chip DVFS link model proposed by
Worm et al. [12]. As Figure 5 shows, a DVFS controller is
added to the original link architecture. The DVFS controller
receives the DVFS control message from the producer router.
At the producer end, the DVFS controller scales the voltage
used to drive the communication channel according to the
DVFS control message. The frequency of the data buffer is
also changed to fit the driving voltage. At the consumer end,
the threshold voltage of the receiver logic is adjusted in order
to correctly convert the voltage value to a digital signal.

Note that more adjustable levels of voltages incur more
costs, since on-chip regulators occupy a considerable area [6],
[7], [13]. However, according to the power consumption
formula: p ∝ v2f , adjusting frequencies can still reduce
substantial power consumption. Without loss of generality,
in the following discussions, we assume that there are five
adjustable levels of voltages for each link.

A. Superposing Link Utilization

As described in Section III, the utilization of a communica-
tion link ei in the network at the t-th time interval is denoted
as Utili(t). Let PredictedUtili(t) be the predicted utilization
of ei at the t-th time interval. The goal of the network traffic
prediction is to minimize the value of ∆i(t) for all ei ∈ E
and all t ∈ H , while ∆i(t) is defined at the end of Section III.

In the NoC that implements deterministic routing algo-
rithms, the data transmission path between any pair of source
and destination routers can be determined before the data
transmission starts. Thus, for any communication link ei in
the network, the total size of data that is predicted to traverse
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through the link can be calculated by summing the data sizes
of all the transmissions passing through ei at the t-th time
interval. Let di(t) denote that sum. Therefore, the predicted
utilization of ei is: PredictedUtili(t) =

di(t)
δ×W

B. Strategies for Link-DVFS

We have discussed in Section IV how ATPT predicts the
communication traffic injected from a tile into the NoC. By
exchanging the predictions between tiles, the network traffic
at the next time interval can be calculated. Consequently,
the utilization of each link in the network can be predicted.
Using the predicted link utilization, we propose three dif-
ferent link DVFS strategies, Direct-Set DVFS (DS-DVFS),
Latency-Aware DVFS (LA-DVFS), and Power-Aware DVFS
(PA-DVFS).

In DS-DVFS, at the end of each time interval, the VF level
of a link is set according to the predicted size of data to be
transmitted. For any link ei in the network, the predicted traffic
of all the end-to-end transmissions passing through this link
are summed, which gives the parameter di(t). The VF level
is set to the minimum level that can transmit di(t) amount of
data through the link within one interval. However, if di(t) is
larger than δ×W , it means that the data needs more than one
interval to transmit. Thus the VF level of this link is set to the
highest level to maximize the throughput.

LA-DVFS takes into account the latency caused by link
DVFS. If the predicted utilization is smaller than current one,
LA-DVFS only lowers one VF level in the next time interval.
For other cases, it sets the VF level directly according to the
utilization prediction. This strategy avoids slowing down links
too sharply. Instead, it steps down the link speed gradually for
stability.

PA-DVFS emphasizes power consumption more. If the
predicted utilization is higher than the current one, PA-DVFS
raises only one VF level in the next interval. For other
cases, it sets the VF level directly according to the utilization
prediction. This strategy applies inertia to raise the VF level
but allows quick drop of the link speed for aggressive power
saving.

In Section VII-B4, the three DVFS strategies are evaluated
for their performances.

C. Discussions

Since traffic predictions and DVFS adjustments are both
based on a single time interval, the VF level of a link,
ei, should be set to complete the transmissions of all the
predicted workload from all the end-to-end transmissions
passing through ei in one interval. The problem is that DVFS
and traffic predictions affect each other. In the following, we
examine the effects. Consider a link ei in the NoC. Let us
examine all the links that may feed data to ei. There are two
cases:

1) The utilizations of all these links are correctly predicted.
The VF level of ei can then be set accordingly, which
should satisfy the required bandwidth. Thus, no conges-
tion will be created.

2) The utilizations are predicted wrongly (either over- or
under-estimated) in some of these links. The ATPT
predictors will detect the errors and refine their predic-
tions. In addition, ATPTs use hybrid predictors. When
the POP predictor fails to find patterns, ATPT will
switch between POP and LVP to better match the actual
traffic. One may argue that the correcting process may
be too slow and delayed data may be accumulated
to cause congestion. This is actually a matter of how
aggressively we adjust the VF level on mispredictions. In
Section VII-B4, we will examine the effects of different
strategies to DVFS adjustment.

VI. IMPLEMENTATION CONSIDERATIONS

In this section, we examine various considerations in im-
plementing the proposed ATPT predictors. Due to the space
limitation, parts of the implementation details are moved to
our technical report [14].

A. Area Occupancy

We next analyze the area overhead of the ATPT in terms of
the number of transistors in chip. Assuming that to store a bit
needs 6 transistors, we apply all the space-reducing techniques
discussed in [14] except the LRU replacement mechanism in
the second-level table. When the number of cores is 64, the
amount of transistors needed to implement ATPT is about
0.1M. When the number of cores is 36, the number reduces
to about 0.06M. As a reference, the AsAP developed by UC
Davis contains 55M transistors [3], and Tilera’s TILE64 has
615M transistors. It follows that the ATPTs occupy 0.11%
and 0.017% of space in AsAP and TILE64, respectively. The
space overhead is quite small and tolerable. Furthermore, we
also model ATPTs with a SRAM implementation (similar
to cache implementation) and estimate the area overhead by
CACTI [15] under a 32nm process technology. The estimated
area is 0.133708×0.056544mm2, about 0.01744% of the area
of TILE64. This further confirms our estimation above.

B. Energy Consumption of ATPT-Based Predictors

The energy consumption of ATPTs is important, for oth-
erwise the benefits of link DVFS will be offset. Moreover,
the energy overhead of scaling voltage levels should also
be considered. We will examine these two factors in this
subsection.

1) Energy consumption of ATPTs: We model ATPTs with
CACTI [15] to estimate the power consumption. The param-
eters are the same as those in Section VI-A. The estimated
energy consumption per access is 0.00394686 nJ. Assuming
that every ATPT is accessed in every cycle, the ratio of
energy overhead to energy saved is only 2.01407 × 10−7.
This indicates that the energy saving by ATPTs is more than
compensated by its overhead.

2) Energy consumption of DVFS switching: Scaling volt-
age/frequency in DVFS consumes energy. Although frequent
adjustment of the VF level of a link according to its utilization
can better match the traffic flows, the transition energy of the



6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 100000 200000 300000 400000 500000 600000

T
ra

n
si

ti
o

n
 E

n
e

rg
y

 (
J)

DVFS Update TIme Interval (Cycles)

Fig. 6. The transition energy of scaling VF level with different intervals of
updating DVFS

scaling can be too high. It is possible to strike a balance
between these two factors by adjusting the frequency of
updating the VF level. The energy overheads for changing
the voltage level from V1 to V2 can be calculated with the
following equation: Eoverhead = (1 − η) · C · |V 2

2 − V 2
1 | ,

where C is the capacitance of the power supply regulator and
η is the power efficiency. In the following experiments, the
capacitance is assumed to be 5µF and the power efficiency is
set to 90%. Details can be found in [14].

Figure 6 shows the energy overhead of scaling the VF
level when running the LU decomposition in the SPLASH-2
suite [16]. The transition energy becomes lower as the DVFS
update interval is longer. With a longer update interval, the
number of times in voltage transition is reduced. However, this
also lengthens the time for adjusting the VF level of the links,
resulting in a mismatch between the speed of the link and the
traffic flowing through it. This in turn wastes energy and even
causes traffic congestion. It follows that the design parameters
need to be carefully considered while applying the link DVFS
techniques. In Section VII, we will evaluate the accuracy of
ATPT-based predictor with different DVFS updating intervals.
The results show the energy overhead in VF scaling can be
neglected.

VII. EVALUATION

In this section, we evaluate the accuracy of our proposed
ATPT predictions using different settings of time intervals,
and compare the predictors LVP and POP. A simple example
will be used to demonstrate that the ATPT-based predictors are
capable of dynamically learning the communication pattern of
an application and recovering from misprediction.

A. Evaluation for ATPT-Based Predictors

We use Tilera’s TILE64 as the evaluation platform [1].
TILE64 has a mesh-based NoC with five independent networks
to support different functions, namely the static network
(STN), the tile dynamic network (TDN), the user dynamic
network (UDN), the memory dynamic network (MDN), and
the I/O dynamic network (IDN). Application programs can
perform tile-to-tile communications through the UDN by call-
ing the iLib Library API provided by Tilera. For our study,
we only track and predict UDN traffic, because it reflects the
communication behavior of the application. The configuration

TABLE I
CONFIGURATION OF THE EVALUATION PLATFORM

TILE64 Platform Settings
Processor family Tilera Tile64
Frequency 866 MHZ
Number of cores (tiles) 64
Interconnection network Multiple 8-by-8 meshes
Memory 16KB L1+64KB L2 per core

4 DDR2 memory controllers
Routing algorithm Dimension-order

of the TILE64 platform for our evaluation is summarized in
Table I.

To evaluate ATPT, TILE64 is used in a hybrid way as
follows. We dedicate half of the tiles in TILE64 to execute the
benchmark program directly. Another half of the tiles are used
to simulate the operations of the corresponding ATPTs, one tile
simulating one ATPA for one tile in the execution plain. Thus,
if we are going to evaluate ATPT for a parallel benchmark
program running on an n-core multiprocessor, we will use
2n tiles of TILE64: n of them execute the program directly
and another n tiles simulate the behavior of the corresponding
ATPTs. We define WORKER as the set containing the tiles
that execute the application program and UPDATER as the set
containing the tiles that simulate the behavior of corresponding
ATPTs. The relationship between a tile wtj in WORKER and
a tile uti in UPDATER is: uti ∈ UPDATER will simulate the
ATPT for wtj ∈ WORKER if i = j.

We use a modified blocked LU decomposition kernel from
the SPLASH-2 suite [16] as the benchmark. The original
blocked LU decomposition kernel from the SPLASH-2 suite
is a data-parallel shared-memory program. We modified the
program in two ways. First, in the initialization stage, we
determine the allocation of data to the tiles in WORKER and
then let them cache their own portion of the data. Second,
when a WORKER tile wti needs data that are allocated to
another WORKER tile wtj , we use the iLib tile-to-tile message
passing API to transmit the data from wtj to wti. In the
mean time, a notification message containing information
regarding this transmission will be sent to utj to simulate
the operations in the corresponding ATPT. Note that, since
direction execution of application program in the WORKER
tiles is much faster than simulation of ATPT in the UPDATER
tiles, the WORKER tiles have to be paused until the UPDATER
tiles can complete their simulation.

We run the modified blocked LU decomposition to solve 50
arrays. Each of them is a 512×512 64-bit floating point array
generated randomly at initialization. Each array is separated
into 1024 16 × 16 subarrays and dispatched to 16 tiles for
parallel processing.

The time interval in tracking and predicting traffic is
a critical factor affecting the prediction accuracy and the
applicability of the prediction results. In this experiment,
we try to find a suitable time interval for our benchmark
program. A suitable time interval should be able to capture
the communication behavior of the application and predict the
network traffic with acceptable accuracy. We have tested the
time interval settings ranging from 1,000,000,000 cycles to
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Fig. 7. The ratio of using POP and LVP under different time intervals

50,000,000 cycles, as shown in Figure 7.
From the figure we can see that when using larger time

interval settings (over 800,000,000 cycles), the prediction error
is relatively low, but the POP is rarely selected. Although we
can get higher prediction accuracy by using larger time interval
settings, the low POP usage means that the ATPT-based pre-
dictor does not observe large variations in the communication
behavior. This indicates that it misses the dynamism of the
NoC traffic and thus the prediction is not applicable. Similar
results can be observed if applying relatively small time
interval settings (under 50,000,000 cycles).

For our benchmark, with the time interval settings ranging
from 100,000,000 cycles to 400,000,000 cycles, the POP is
frequently selected. This indicates that ATPT-based predictor
observes a varying communication behavior, and the prediction
can tell us whether the NoC is busy or not. In summary,
the time interval settings ranging from 100,000,000 cycles to
400,000,000 cycles allow ATPT to capture the communication
behavior of our benchmark program.

Next, we study the effects of hybrid predictors in ATPT
versus pure LVP or POP. Note that ATPT uses both predictors
and dynamically selects between the two. The prediction error
rates of the three different predictors with different update
interval settings are shown in Figure 8. The diamond dotted
line shows the performance of using only the local predictor
(LVP), which suffers from high error rates under time intervals
ranging from 150,000,000 to 650,000,000 cycles. This is
because the communication traffic with these time interval
settings varies widely as monitored by ATPT. While using
larger time intervals, the local predictor has good prediction
accuracy since the communication patterns are almost the
same, again as shown in each ATPT update.

On the other hand, the POP (diamond dotted line) performs
well in all the evaluated time intervals. The POP can work as
an LVP when the two entries of 00000000 and 11111111 have
been filled, which stand for the communication patterns of no
transmission and transmit at all times. The result is highly
accurate predictions in low-variance communication patterns.
The POP is also capable by its nature of predicting accurately
in high-variance communication patterns.

However, the POP uses more memory space than the LVP.
The accuracy of the POP is related to how many patterns
can be tracked in the 2nd-level table. Currently, we have not
limited the size of the 2nd-level table, and therefore all the
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Running a modified SPLASH-2 blocked LU decomposition benchmark with
16 tiles and 600 million cycles as the update time interval.

patterns can be tracked and used to make predictions. But
in a practical implementation, considering the transistor count
overhead, the 2nd-level table may be not large enough to hold
all the patterns throughout application execution, so only a
subset of the patterns could be recorded. Consequently, the
accuracy will be dramatically affected by the replacement
policy. When a longer pattern history is needed, the number of
total tracked patterns (the difference between the POP and the
ATPT-based predictor) will be broadened as Figure 9 shows.

To summarize, the ATPT-based predictor (triangle dotted
line) adaptively selects an LVP in low-variance traffic, and a
POP for high-variance traffic. Moreover, the experiments show
that the ATPT uses fewer entries than the POP and is suitable
for memory-constrained design.

1) Pattern learning and misprediction recovery: We give a
simple example to demonstrate how the POP (as a part of the
ATPT-based prediction) learns the communication pattern and
recovers from misprediction at runtime. Figure 10 shows two
different time periods of the benchmark program execution,
where the POP encountered the same communication patterns.
The first time, the POP recognized the pattern of 10111101,
and it made an inaccurate prediction (1 stands for there
is a transmission in that time interval, and 0 stands for
no transmission). The POP will change the prediction for
that communication pattern in the 2nd-level table when a
misprediction is detected. Afterwards, when the same pattern
appears, the POP can make a correct prediction.

To further validate the accuracy and the efficiency of
LRU design, four benchmarks (Bcast, Scatter, Gather,
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Fig. 10. The communication pattern trace from Tile2 to Tile3 of different time intervals in the modified SPLASH-2 LU decomposition kernel execution.
The POP suffers from misprediction for a certain communication pattern and recovered in the next encounter with the same pattern.

Fig. 11. Prediction results of Intel MPI benchmarks.

Allgather) from Intel MPI Benchmarks (IMB) suites [17]
are also evaluated, the results also show that ATPT-based
predictor has good high performance, and the efficiency of
LRU is ranging from 60% to 88%, which shows the existences
of repetitive behaviors.

In summary, according to the experiments above, we claim
that ATPT integrates the advantages of the LVP and the POP
with small chip area overhead.

B. A Case Study for DVFS on Links

In this section, we present a case study to evaluate the
efficacy of the application-driven link DVFS method.

1) Simulation Setup: The Tilera’s TILE64 platform is used
to run the benchmark programs and collect data transmission
traces. The data transmission traces are then used as the input
of a NoC power simulator to obtain the power consumption of
the benchmark. TILE64 is a many-core platform that consists
of 8× 8 tiles connected by mesh NoC architecture. No hard-
ware virtual channels are implemented. The routing algorithm
is X-Y routing. The NoC power simulator originates from
the PoPNet network simulator. We extend PoPNet to make
it support dynamically adjusting the frequency and voltage of
individual communication links at runtime.

2) Methodology: On the TILE64 platform, we use 4 × 4
tiles to run the benchmark program and another 4× 4 tiles to
simulate the ATPT-based predictor of each router, respectively.
We refer to the tiles that run the benchmark program as
WORKER tiles and the ones that simulate the ATPT-based
predictor as UPDATER tiles.

TABLE II
DEFAULT SETTING OF THE SYSTEM PARAMETERS FOR THE EXPERIMENTS.

Parameters of Target NoC
Topology 4× 4 2D Mesh
Bandwidth 1 flit/cycle
Flit size 8 bytes
Routing algorithm Dimension-order
Physical per-link length 2603 µm
Simulation cycle 2× 109 cycles
Number of entries in L1-table 8
Number of entries in L2-table 128
Traffic predictor update time interval 2500000 cycles
Number of DVFS levels per link 5 levels

When one of the WORKER tiles issues an outgoing data
traffic, the information of this data transmission is recorded
by its corresponding UPDATER tile. The UPDATER tiles
periodically simulate the update process of the ATPT-based
predictor, and make the data transmission prediction for the
next time interval.

After making the data transmission prediction, one of the
UPDATER tiles is responsible for aggregating all the predicted
value and make the DVFS decision for each link. A DVFS
message is then inserted into the data transmission trace. The
extended PoPNet has the ability to read the DVFS messages,
and change the frequency levels of links in the network during
the simulation. Finally, the extended PoPNet returns the power
consumption of the benchmark program running on a NoC
architecture with application-driven link DVFS.

We have ported the blocked LU decomposition to the
TILE64 hardware platform as a case study. The input of the
LU decomposition is a 512 × 512 64-bit floating point array
randomly generated at initialization. The array is divided into
1024 16 × 16 subarrays and distributed evenly to 16 tiles on
the TILE64 platform for parallel processing. Default system
parameters are provided in Table II.

3) The accuracy of link voltage and frequency level ad-
justment: We compare the VF level of the communication
links set by the proposed method with the best-fit VF value.
Figure 12 shows the link VF setting a comparison between
the best-fit VF value and the result of DS-DVFS. The black
line shows the best-fit VF setting for this communication link
at each time interval. The best-fit VF setting is calculated
derived from the formulation proposed in Section III using
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the collected data traffic trace after the application execution.
The grey line shows the VF level at each time interval set by
the DS-DVFS method at application runtime. The DS-DVFS
chooses the same VF level with the best-fit VF value most of
the time. The average VF level difference between best-fit VF
value and DS-DVFS is only 0.28 levels.

4) Communication links power reduction results: In Figure
13, the power consumption and the average packet latency of
the best-fit VF setting and the three DVFS methods proposed
in Section V-B are provided. The result of best-fit VF setting is
generated by a 2-pass simulation. In the first pass, we collect
the data traffic trace of the target application, and calculate the
VF setting using the formulation described in Section III. In
the second pass, the target NoC settings are shown in Table
II. We use the calculated VF setting to simulate the power
consumption of the target application. Namely, the calculated
VF settings is best-fit for the next interval.

By using the best-fit VF setting, 60% power is reduced
on communication links while causing low latency overheads
(12%). On the other hand, DS-DVFS provides greater power
reduction but also brings about huge packet latency increases.
DS-DVFS switch the VF level of links directly according
to the traffic prediction, and thus the performance is closely
related to the prediction accuracy. Since the application we use
performs a small amount of data transmissions during the ex-
ecution, our ATPT-based traffic predictor tends to indicate the
data traffic size as smaller. Consequently, DS-DVFS usually

sets a lower VF level than the best-fit VF value.
Based on DS-DVFS, we provide two different DVFS

approaches to make the power reduction mechanism more
flexible. PA-DVFS aims to reduce power consumption while
ignoring the impact of increasing packet latency. Using PA-
DVFS, we receive a 90% power reduction and cause 44%
latency overheads. LA-DVFS tries to keep the packet latency
low while saving the link power. LA-DVFS gives a 52% power
reduction and 5% latency overheads. In general, LA-DVFS has
the all-round performance considering power consumption and
incurred packet latency.

VIII. RELATED WORKS

Traffic Prediction in NoC. In the embedded system area,
application graphs are widely used to depict the communica-
tion relationship among tasks [18], [19]. The knowledge of the
applications can be extracted by off-line analysis and profiling
data. However, the actual workloads and the communications
among tasks often change over time, oncoming tasks are
unknown, so it is not enough to confirm the traffic workload
at runtime.

Due to the simplicity and the low area overhead of the
simple counters, current research is interested in exploring
their usage and provides system adjustments based on clues
gleaned from the counters. In [10], counters and tables are
used to identify whether running tasks are computation- or
memory-bound.

In [8], switch-to-switch exchange information is used to
predict the pressure of the traffic and make flow control
decisions. They predict traffic from the switch perspective
and do not consider the behaviors of the applications. In
contrast, our predictions are made from the perspectives of
applications. Moreover, in ATPT-based predictor, since the
data transmission is tracked before the data is injected into
the router buffers, the data size can be recorded and predicted
even if it is larger than the router buffer size. In this way,
the bursty data transmission can be predicted more accurately
than the hardware-based approach.

Table-based predictions are often used in branch prediction
and cache prefetching [20]. The studies on cache prefetch-
ing concentrate on prefetching data according to temporal
and spatial locality while accessing the cache. Our solution
concentrates on historical patterns, and records the patterns
periodically.

Power Management for NoC. In [4], the power con-
sumption of the interconnection network has been addressed.
Servers are not only energy drains; research on the chip-
level multiprocessor found that the network-on-chip consumes
around 36% of the whole energy of the system [2]. In [5],
the architectural power model for an on-chip network has
been proposed for estimating and evaluating the design of the
network-on-chip. Also, the power model has been ported into
a full-system simulator [21]. In [6], [7], frequency tuning for
on-chip networks is well addressed.

In comparison to the previous work on this topic, our
study is the first one to take advantage of the real application
behaviors [22], not only to monitor and predict the NoC, but
also to control the link VF by the application behaviors [11].
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IX. CONCLUSIONS

In this paper, we propose a two-level table design called
ATPT for predicting end-to-end traffic on the NoC. The design
is introduced and the implementation details are discussed.
Based on the traffic behaviors of the running applications,
ATPT-based predictors can predict the workload of each
communication link in the network, and the suitable working
frequency and the corresponding voltages of the links can be
set in advance. Experiments show that DS-DVFS achieves an
86% link power consumption reduction and incurs 21% packet
latency overheads. Moreover, PA- and LA-DVFS approaches
make the power reduction mechanism more flexible.
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