
Attackboard: A Novel Dependency-Aware Traffic Generator
for Exploring NoC Design Space

Yoshi Shih-Chieh Huang, Yu-Chi Chang, Tsung-Chan Tsai,
Yuan-Ying Chang, and Chung-Ta King

Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
{yoshi, yuchi, tctsai, elmo, king}@cs.nthu.edu.tw

ABSTRACT
Network-on-chip (NoC) is very important for many appli-
cations, such as many-core architectures and application-
specific usages. For exploring the design space, several ap-
proaches have been proposed with different considerations.
In this paper, inspired by bloom filters, we propose Attack-
board, a novel design for exploring the design space of NoC,
which satisfies accuracy, space efficiency, and simplicity. To
justify the usage of Attackboard, a parallel object detec-
tion program is used as the benchmark program to evalu-
ate the performance of a specific NoC. By comparing the
results with an execution-based simulator, it shows that At-
tackboard simultaneously achieves the requirements of fast
speed, simplicity, and accuracy.

Categories and Subject Descriptors
B.4 [Input/output and data communications]: Proces-
sors

General Terms
Performance, Design

Keywords
Network-on-chip, Many-core, Dependency, Traffic genera-
tor, Table-driven

1. INTRODUCTION
Network-on-chip (NoC) has become the de facto of the

substrate of many-core architecture due to its simplicity and
scalability. Exploring the design space of NoC is therefore
increasingly important. To study a novel NoC architecture,
architects usually exercise it with realistic workloads and
measure quantitatively how close the design objective is ap-
proached. Consequently, a model of the interested architec-
ture needs to be established and evaluated first, even when
the detailed implementations are not available yet.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June 3-7, 2012, San Francisco, California, USA.
Copyright 2012 ACM ACM 978-1-4503-1199-1/12/06 ...$10.00.

Early-stage models are essential for architects working on
novel architectures, in order to evaluate the proposed ar-
chitecture even before the detailed RTL or circuit design is
available. Existing early stage models for NoC architectures
come in different flavors, and cover a wide range of accuracy,
simulation speed, and flexibility. One of the most confident
solution to early stage models are full-system simulators,
which have been success in flexibility as it takes moderate
efforts to develop and configure at early design stage. For the
mature full-system simulators including NoC, a wide range
of topologies, routing algorithms, and router architectures
can be modeled by changing the simulation parameters, such
as Simics with Garnet, GEMS, M5, SESC, and etc [3, 10, 5,
8]. Full-system simulators have been successfully deployed
to study various architectures, due to their high flexibility
and accessibility. However, these simulators have relatively
lower simulation performance, and does not scale with the
progress of modern many-core architectures.

In contrast to simulate the full system, one another way
to address the simulation complexity is through trace-driven
simulator, which takes the trace log generated in execu-
tion as input. A second simulation run, usually with cycle-
accuracy, is driven by the previously generated trace. Based
on similar methodology, a number of trace-driven simulators
for NoCs have been proposed, such as BookSim [1] and [9].
Comparing to full-system simulation, trace-driven simula-
tion is simple and fast. However, the trace-driven simulation
is open-loop, which does not consider the backpressure from
NoC to the processing elements. Therefore its accuracy is
low and may not be tolerable for all studies.

As a result, improving the accuracy of trace-driven sim-
ulation has been addressed in state-of-the-art research. In
[11], dependencies among injected packets are inferred and
embedded into the raw trace logs. Embedding dependencies
into traces absolutely brings more confident results of evalu-
ation. However, once dependencies are embedded into orig-
inal trace logs, two following problems arise. First, it makes
the trace logs much complicated and require more storage
space, ranging from megabytes to gigabytes according to the
granularity. Second, each entry in trace-log becomes corre-
lated and therefore need to be processed while evaluating
systems with dependency-aware traces.

In this paper, we propose Attackboard, a new method-
ology to help explore the design space of network-on-chip.
Attackboard strikes a balance between speed and accuracy,
while keeping the simplicity as trace-driven simulation. The
essence of Attackboard is multiple bloom filters. By taking
advantages of the property of denial for sure, permitting for

high confidence, Attackboard1 can rebuild the application
behavior with a simple pattern-oriented table.
Since each attackboard is a dependency-driven table rather

than a time-driven table, redundant dependency patterns
only take one line in an attackboard. This property helps
reduce the size of table since a program is usually intrinsi-
cally repeating program because of loops. By keeping the
causality-domain instead of time-domain, the execution can
be logged with the pattern-oriented method.
Our evaluations show the accuracy and space overhead of

Attackboard by comparing with an execution-based simu-
lator. To identify the contribution of this paper, we listed
them as follows:

• A novel design with multiple bloom filters for NoC
evaluation is proposed.

• Experiments for comparing Attackboard with an execution-
based simulator are evaluated.

• Analysis for the practical implementation is discussed.

The rest of paper is organized as follows. Related works
are given in Section 5. Next, Section 2 provides a formal
definition of Attackboard. In Section 3, we firstly start with
the overview of Attackboard, and followed by the detailed
operations and design options. In Section 4, we evaluate
Attackboard by comparing with execution-based simulation.
Finally, conclusion is drawn in Section 6.

2. PROBLEM FORMULATION
Assume that there are N routers in an NoC. To each

router k, it contains its own attackboard, denoted as abk,
which is a two-dimension table, and in which each row stands
for a unique dependency pattern, and each column repre-
sents the necessity of must having data from this router, i.e.,
a necessary predecessor. For example, if there is a 1 in the
cell of row i and column j, it means that for satisfying pat-
tern i, router j must have already injected data to router k.
In contrast, if the number in the cell is 0, it means that this
pattern is not necessary to be after the injection of router j
to k.
Each router k contains a Current Status (CSk) with length

N in terms of bit. By using CSk as the index to match an
entry in abk, once a pattern is satisfied, the correspond-
ing injection is generated. This problem can be modeled as
a Multiple Bloom Filters problem. Each row represents a
bloom filter, and CSk is an entry which is trying to pass one
or more bloom filters.

3. SYSTEM DESIGN

3.1 Overview
There are mainly two stages in Attackboard. In the first

stage, as Figure 1(a) shows, the dependencies of the injec-
tions from each source node are firstly discovered, and then
represented with a table structure. The basic idea of this
stage is to periodically capture the relationships among in-
jections. Once the stage one is done, the characteristics of
the benchmarks are now represented by the attackboards.

1In the following context, Attackboard with initial capital
stands for the whole design, and attackboard with the lower
case stands for the table structure.

Execution
AB5 AB5 AB5 AB5 AB5 ABN

(a) Capturing dependencies and represented by attackboards

ABk + CSk =
Pairs of

(destinationk, payloadk)

(b) Each router generates its traces by feeding current status to its AB

AB1
AB2

Figure 1: The system flow of Attackboard. (a) Ex-
ecution logs are broken to attackboards and dis-
tributed to each router. (b) A router generates traf-
fic by feeding its current status to its attackboard.

In the second stage, as shown in Figure 1(b), while evalu-
ating an NoC configuration, each router only needs to look
up its own attackboard to generate traffic. Similarly, the
basic idea of this stage is to periodically generate the traffic
according to the indications of attackboards.

3.2 Stage 1 - Creation of Attackboard
For each send event, we observe the received traffic for an

interval. Suppose that a send event n is observed at cycle
x, and an interval size I is selected as our observing window
size, i.e., any traffic occurs between cycle I − x to x would
be granted as a dependent receive event to the send event
n. As the representation between these dependent events
and send event n, a corresponding row is inserted into the
attackboard. For each dependency event, the relationship
would be marked as 1 in the corresponding cell in the table,
indicating if the source core of a dependent receive event had
communication with the core of the observed send event. For
example, in the scenario shown in Figure 2, the receive event
n − 1 and n − 2 would be granted as the dependent events
to send event n. And then a dependency pattern could be
built as < 1, 0, 1 >, which implies that core 0 and core 2 have
communicated with core 3 before the send event n occurs.

The attackboard is able to semantically reveal the pro-
gram behavior, thus serve as a good evaluation tool to ex-
ploit the performance of NoCs. As previous works [11, 7], it
is important to collect correct dependency information for
attackboard so as to discover the semantic meaning of pro-
grams. The selection of dependency-extraction interval size
I is thus critical. The size of I decides how many dependent
(or independent) events of a send event could be seen, and
therefore strongly correlates to the accuracy of the recorded
dependency information.

Take the function MPI_Allreduce as an example. MPI_Allreduce
performs a reduce operation after core 0 collects data from
all other cores and then broadcast the results back to all
cores. Since the broadcast can only happen after core 0
receives all data from other cores, the corresponding attack-
board of this operation should be like < 0, 1, 1, 1 > with
send events P1(4), P2(4), P3(4). This attackboard indicates
that only after receiving from core 1, 2, 3, can core 0 sends

t = 0
E

x
e

c
u

ti
o

n
 f

lo
w

 o
f

re
a

l
b

e
n

c
h

m
a

r
k

Core 0 Core 1 Core 2 Core 3

Send n S

Rcv n-1

Rcv n-2

Rcv n-3

Look-behind

interval

I

x

Figure 2: Recognizing the dependent receives of
send n.

data to core 1, 2, 3, each with data quantity 4, which is
exactly how MPI_Allreduce works. By using this small and
scalable attackboard, the semantic meaning of program be-
haviors can be well presented. In Section 4.1, we have an
experiment to discuss the choices of dependency extracting
interval.

3.3 Stage 2 - Usage of Attackboard

3.3.1 Initialization
The dependency status of each router k is initially set

as all 0s. Note that there is always an attackboard with
dependency pattern as all 0s, since the very first send event
of the program depends on no other send events but the
startup of the execution. Therefore, the attackboard need
nothing to be propelled but the startup of the simulation.
After the first send event generated by the attackboard, the
simulation would keep generating dependency-aware traffic
to cause the following injections as a chain reaction.

3.3.2 Entry Matching
As Figure 3 shows, each router k keeps its Current Status

(CSk) which is caused by others. CSk is a bitwise vector with
length |N | − 1, where N is the number of processors. For a
bit in CSk at column y, 0 means that currently processor k
has not received any packet from processor y. In contrast, 1
represents that processor k has received data from processor
y.
In the end of each interval I ′, CSk is used as an index

to match its own attackboardk (abk) to find the matches.
As the matches are found, the recorded send events of this
dependency pattern entry will be generated. Note that the
generated traffic of an entry will be evenly distributed to the
incoming interval for avoiding all the send events injecting
at the starting point of the next interval. This is for sim-
plifying the simulation without recording the computation
time before an injection.

3.4 Table Minimization
Since the design of Attackboard are based on bitwise bloom

filters, the number of entries are proportional to the number
of processors, i.e., 2(N−1), where N is the number of pro-
cessors. For future many-core architecture, the number of
processors is expected to be thousands of cores in a chip.
Considering such a situation, we propose two methods to
reduce the size of attackboards.

Figure 3: A sample of an attackboard and the pro-
cedure of entry matching and traffic generating

3.4.1 Merging duplicated entries
During our gathering the dependency information, those

send events with the same dependency pattern would be
compressed into the same dependency pattern category. Up-
coming send events would be appended to the end of the de-
pendency pattern category, except for those send events with
same quantity and destination. The send events of same
quantity and destination would be granted as the repetition
of one send events, and thus only one send event would be
recorded. However, the payloads of two or more send events
may be different. Denote a set S as set of the send events
which have the same predecessors and injecting destination,
and denote the corresponding payloads as payloadi, i ∈ S.
We proposed three solutions: First, by averaging the pay-
loads and only record the averaged value as the constant

payload. That is,
∑

i∈S payloadi
|S| . Second, record the payloads

as a sequence, i.e., in the cell of destination, keep the se-
quence as Pi(payload1, payload2, ..., payload|S|). While gen-
erating traffic, the sequence acts as a circular queue. Third,
based on the second solution, instead of using the round-
robin strategy to select, different payloads are tagged with
probability values according to the number of occurrences,
and the selection is based on the probability.

3.4.2 Merging similar entries
For further minimizing each attackboard, similar entries

can be merged into one. For identifying those entries which
have similar patterns, eXclusive OR (XOR) operation can
calculate the Hamming distance of two entries. For those
entries which have closest Hamming distance are considered
to be merged first. Once two entries are considered as high
similarity, denoted as Ei and Ej , the two entries are removed
and replaced by a new entry Ek = Ei · Ej . For example, if
Ei =< 1, 0, 1, 1 > and Ej =< 1, 1, 0, 1 >, then it can be
replaced with Ek =< 1, 0, 0, 1 >. This operation relaxes the
condition of the necessity of predecessors, but the new entry
still keeps the coexisting predecessors.

4. EVALUATION
The evaluation of NoC architectures usually involves per-

formance of different NoCs during the executions of real pro-
grams. If the average network delay of NoC A is more than
that of NoC B, we assert that the NoC B is more suitable
than NoC A for target programs. In the context of this eval-
uation standard, we would evaluate how close the average
network delay is by comparing the results of attackboard
with real benchmark executions on an execution-based sim-
ulator, since it is a representative of the semantic meaning

Table 1: Default simulation setup

Simulation Platform
Native processor element Tilera TILE64 [4]
Native processor frequency 700 MHZ
Simulated topology 4× 4 mesh network
Routing algorithm Dimension-order
Bandwidth 1 flit/cycle per port

of real programs. The accuracy is considered higher if the
simulation results of attackboard is closer to the results of
real benchmark executions. Besides accuracy, the size of at-
tackboard is also evaluated compared with communication
traces to meet the needs of easy distribution.
In the following paragraph, we evaluate Attackboard with

execution-based simulation in terms of accuracy, size, and
how representative the attackboard is for semantic meaning
of real programs. The parameters of the simulated environ-
ment are shown in Table 1. The utilization of Attackboard
involves two stages. At the first stage, we run real bench-
marks to generate Attackboard by retrieving dependency
information, and examine if attackboard could successfully
portray the semantic meaning of the behaviors of real pro-
grams. Afterwards, at the second stage, we would run the
simulation to generate dependency-aware traffic with At-
tackboard to examine the accuracy. Finally, we would com-
pare the size of attackboard with trace.

4.1 Dependencies Extracting
We use an execution-based simulator to execute the in-

strumented programs and capture the dependencies for a
micro-benchmark from Intel MPI Benchmark (IMB) suites [2]
and a parallel object detection program. The instrumenta-
tions are done by hand and therefore guaranteeing the true-
dependencies. Other strategies to automatically capture the
dependencies are discussed in recent works [7, 11, 13].
Note that the dependent events could be repetitive among

send events. That is, if an upcoming send event n+1 occurs
right after send event n, the observing window of these two
send events might overlap, which results in the same depen-
dency pattern, the reason is that these two send events are
just dependent on the same receive events simultaneously
(such as the MPI group communication as MPI_allgather,
MPI_alltoall, etc.) in real benchmarks. Furthermore, as a
dependency pattern driven traffic generation, Attackboard
would generate two send events once the receiving depen-
dency pattern is satisfied, which is compatible with the se-
mantic meaning of programs.
Figure 4 shows the derived attackboard of odd-even sort

and object detection. In the odd-even sort part, the attack-
boards of core number 0, 1, and 15 are shown. The first
entry of attackboards shows that core 0 would send data
(with quantity 4) to core 1 without depending on any send
events, and the core 1 would send data to core 2 in the same
situation. Meanwhile, the core 15 would only generate data
to core 14 after receiving data from core 14. This shows
the odd phase of the odd-even sort, while the even phase is
shown in the second dependency entry of core1, and the first
entry of core 15. In the even phase, the core 1 would pass
data back to core 0, which describes the ”swap” operation in
the odd-even sort. And the second entry of core 0 conveys
that if the even phase ends, there should be another upcom-

Core ID Attackboard dependency pattern entry send event

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 P1(4)

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 P1(4)

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 P2(4)

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 P0(4)

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 P14(4)

Core ID Attackboard dependency pattern entry send event

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 P1(2, 4, 30)

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 P2(2)

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 P2(4, 30), P0(30), P3(30)

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 P7(30)

(b) Attackboards of object detection (16 cores)

(a) Attackboards of odd-even sort (16 cores)

Figure 4: Attackboards of odd-even sort and object
detection.

ing odd phase. The attackboards of the unmentioned cores
also obey this communication behavior as discussed.

In the other hand, the object detection part shows that,
initially core 0 would pass data to core 1, while core 1 passes
data to core 2. And after the receiving data from core 0, core
1 would send (handled) data back to core 0 and also pass
data to core 2 and core 3. Meanwhile, the core 15 would
send data to core 7 after receiving data from core 14. This
behavior indicates group communication. The object detec-
tion algorithm here uses data parallelism to detect if object
exists in a frame. To achieve data parallelism, some data
must be exchanged between cores to learn acknowledge of
other part of data. The attackboard also presents the behav-
ior of data parallelism, which is compatible of the semantic
meaning of the programs of object detection.

To conclude, it is feasible to use the derived attackboards
to reveal the semantic meaning of the corresponding pro-
grams.

4.2 Traffic Generating
As discussed in section 4.1, the retrieval of Attackboard

involves the dependency extraction. The dependency ex-
traction methodology has been proposed, with an interval
size I introduced. However, it may be questionable that if
a fixed dependency-extraction interval size could really em-
brace all essential dependency information for different send
events occurred in execution. Thus, during the generation of
dependency-aware traffic, instead of matching the recorded
dependency patterns of attackboard, we grant these depen-
dency patterns as bloom filters. By using the characteristic
of bloom filter – denial for sure, permitting for high con-
fidence – we could generate the traffic only with essential
dependent send events, and still provide chances for those
unrecorded send events (which is also likely to be a prede-
cessor, but somehow lost during creation of attackboard).

With the Attackboard composed of bloom filters, we could
then generate confident dependency-aware traffic. The traf-
fic is generated periodically. Every time the setup simulation
interval I ′ expires, an attackboard would be thoroughly ex-
amined. During the examination, we compare the current
status and the dependency entries of attackboard. Only the
1s in the dependency pattern entries matter. That is, if
we encounter a 0 in the dependency patterns, we simply
treat it as a ”don’t care”. For example, with current status
< 0, 1, 1 > comparing a dependency pattern < 0, 1, 0 >, the
generation of traffic is permitted. Contrarily, if a depen-
dency pattern < 1, 1, 1 > is encountered, the traffic genera-

1

10

100

1000

10000

100000

1000000

10000000

S
iz

e
 (

b
y

te
s)

benchmark

Size Overhead (IMB)

0

200

400

600

800

1000

1200

1400

1600

S
iz

e
 (

b
y

te
s)

benchmark

Size Overhead

(Object Detection)

Attackboard Trace

Figure 5: The space overhead of attackboards com-
pared to trace files.

tion is not permitted.
Once a suitable dependency pattern is found, correspond-

ing traffic would be generated. If no suitable dependency
pattern is found, then no traffic would be generated. Since
the generated traffic would obey the form of dependency
information revealed from real benchmarks, the generated
traffic behaves like the real benchmarks.
As described, the attackboard would periodically generate

dependency-aware traffic with simulation interval I ′. Since
the traffic injection rate is a critical factor to evaluate NoCs,
the selection of I ′ (i.e., how often Attackboard generates
traffic) plays an important role of attackbard simulation. An
appropriate I ′ could attackboard behave as real programs.
The selection of I ′ heavily depends on the NoC architec-
tures, so a tuned I ′ for a simulating NoC architecture is
always needed in the attackboard simulation. In the follow-
ing experiments, we would show that with the easily tuned
I ′, the attackboard could be a representative of real bench-
mark. After the tuned I ′ is found, the average network delay
could then be generated with attackboard simulations.

4.3 Space Overhead
As shown in Figure 5, the space requirement of Attack-

board is quite small. In the size comparison for object detec-
tion, the size of attackboard is comparatively small than the
size of communication traces. Note that the improvement is
not big because of the communication events are relatively
lesser and execution time is shorter compared to other real
programs. A great improvement can be observed in the size
comparison for IMB, it is because the long execution time
and intensive communications, thus the size of communica-
tion traces is very large, and it would grow even larger if the
execution time is set longer. Compared with the large size
of IMB traces, attackboard is much smaller. Attackboard is
scalable, since Attackboard is a timeless table, so the size of
Attackboard would not grow linearly with time, but depends
on how many distinct dependency patterns exist in the pro-
grams. Further, the dependency pattern that Attackboard
records are in essence the semantic meaning of program, the
repetition of behaviors would be folded naturally with At-
tackboard, which makes Attackboard more scalable to use.

4.4 Case Study
The accuracy of Attackboard is evaluated by the compar-

0

0.5

1

1.5

2

2.5

3

3.5

4

800 900 1000 1100 1200 1300 1400 1500 1600 1700

A
v
e
ra

g
e

n
e
tw

o
rk

d
e
la

y
(N

o
rm

a
li
ze

d
)

Interval of traffic generation (I‘)

100

1000

5000

10000

Dependency

extraction

interval I

Figure 6: The accuracy of object detection under
different I and I ′.

ison of average network delay. We compared Attackboard
with the average network delay of the execution of parallel
object detection and IMB Broadcast. The accuracy is pre-
sented as the normalized average network delay with that of
execution of real benchmarks. Also, multiple I and I ′ are
tested to derive the best result.

Figure 6 and Figure 7 show the statistics of normalized
average network delay Attackboard achieved with different
I and I ′ (in terms of cycle). The x-axis represents simu-
lation interval length I ′ and the y-axis represents the nor-
malized results. Different curves in the figure represent an
attackboard with different simulation interval length I. In
the following paragraphs, we discuss different cases, respec-
tively.

4.4.1 Parallel Object Detection
As we can see in Figure 6, there are two groups of the

curves. The first group is the curve with I set as 100. The
curve is initially very high, and falls down slowly. After
I ′ is set larger than 1600, it would arrive a steady value
while still remain a comparatively high value. The reason
could be found obviously in the content of the attackboards.
There is only one dependency entry – all zeros – of the at-
tackboard with I set as 100. This shows that the length
of dependency-extraction interval is too small, so that the
attackboard could not capture any useful dependency infor-
mation for send events. Therefore, during the simulation
of Attackboard, the send events would inject every interval,
which causes severe congestion.

The second group is the curve with I set as 100, 1000,
5000, and 10000. The curves of second group would startup
high and then flatten out afterwards. It is because when
the length of I ′ is too small, congestion would occur since
the injection rate is too high. In contrast, after I ′ is fairly
set, the injection would then balance with routers’ receiving,
thus generate a steady average network delay value, which
matches the result of the real program. In this group, the
results almost fit the ideal case.

4.4.2 Intel IMB Broadcast
Different from the simulation behaviors of object detec-

tion, the simulation results of attackboard of IMB broad-
cast is very centralized. As Figure 7 shows, the accuracy
(normalized average network delay) of the simulation results
ranges from 0.8 to 1.1, showing the high feasibility of the

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1200 1210 1220 1230 1240 1250 1260 1270 1280 1290

A
v

e
ra

g
e

 n
e

tw
o

rk
 d

e
la

y
 (

N
o

rm
a

li
ze

d
)

Interval of traffic generation (I‘)

100

10K

15K

Dependency

extraction

interval I

Figure 7: The accuracy of IMB under different I
and I ′.

dependency-aware traffic generation by Attackboard. How-
ever, the selection of I does not really matter in this case.
As discussed in section 4.4.1, the interval size has a strong
correlation with the dependency information. If the smaller
the dependency-extraction interval is chosen, the less de-
pendency information. But in this case study, attackboards
of various interval sizes seem to behave in the same way.
It is thanks to the power of bloom filters that suffice the
distortion of dependency information. Since Attackboard
only checks the confident recorded predecessor (the 1s in
the dependency entry of Attackboard), and considers others
as ”don’t cares”, the distorted result is automatically cor-
rected by the natural operations of simulator. Because At-
tackboard will not reject those ”high-confident” traffic gen-
eration, the behavior of broadcast is appropriately replayed,
thus achieve high accuracy.
In summary, since Attackboard could achieve accurate re-

sults with easily tuned parameter, it becomes a good substi-
tute for evaluating NoCs. Using Attackboard as the simula-
tion tool thus much alleviates the evaluation of NoC for real
programs. The easy implementation, small size, and the ca-
pability of exploiting the semantic meaning of real programs
even make Attackboard a better tool to evaluate NoCs.

5. RELATED WORKS
Research on the on-chip interconnection network greatly

uses a trace-driven simulator [1, 6, 13]. Unfortunately, the
accuracy of trace-driven simulation is not convincing, be-
cause in most cases, the dependencies of the transmission are
broken, i.e., each entry in the trace log are not correlated.
As a result, improving the accuracy of trace-driven simula-
tion has been important in state-of-the-art research. In [11],
dependencies among injected packets are inferred and em-
bedded into the original trace logs. Similar idea can also be
found in [7]. Once dependencies are embedded, it absolutely
improves the accuracy of trace-driven simulation; however,
it makes the trace logs much complicated and require more
storage space, ranging from megabytes to gigabytes.
Many other methodologies to help explore design space of

NoC are proposed, including full-system simulation [3, 5],
mathematical models, FPGA-based acceleration [12], etc.
Each of them has their own pros and cons. Among these
existing works, Attackboard strikes the balance between full-
system simulation and trace-driven simulation.

6. CONCLUSION AND FUTURE WORKS
In this paper, we propose Attackboard, a new method-

ology to help explore the design space of network-on-chip.
Attackboard takes advantages of repetitive behaviors and
dependencies among injections. We use IMB and a paral-
lel object detection program to evaluate the performance of
Attackboard. The results show that Attackboard has high
accuracy as programs directly run on the execution-based
simulator. On the other hand, we also compare Attackboard
with trace-driven simulation in terms of space requirements.
The results show that the space overhead is much smaller
while keeping the accuracy.

The future works are twofold. First, the intervals for ex-
tracting and generating rely on empirical rule to find. We
are developing an automatic process to find the suitable in-
tervals. Second, Attackboard currently is evaluated with
message passing programs. In our ongoing work, the traffic
of shared-memory programs will be included.

7. REFERENCES
[1] BookSim 2.0.

[2] Intel MPI Benchmarks.

[3] N. Agarwal, T. Krishna, L.-S. Peh, and N. Jha. Garnet: A
detailed on-chip network model inside a full-system simulator.
In Proceedings of IEEE International Symposium on
Performance Analysis of Systems and Software, 2009.
ISPASS 2009., pages 33 –42, April 2009.

[4] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,
J. MacKay, M. Reif, L. Bao, J. Brown, M. Mattina, C.-C. Miao,
C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks,
D. Khan, F. Montenegro, J. Stickney, and J. Zook. TILE64 -
processor: A 64-core soc with mesh interconnect. In
Proceedings of Internation Conference on Solid-State
Circuits, 2008. ISSCC 2008., pages 88 –598, feb. 2008.

[5] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and
S. Reinhardt. The m5 simulator: Modeling networked systems.
In Proc. of the 39th Int’l Symposium on Microarchitecture,
volume 26, pages 52–60, 2006.

[6] F. Fazzino, M. Palesi, and D. Patti. Noxim: Network-on-chip
simulator, 2008.

[7] J. Hestness, B. Grot, and S. W. Keckler. Netrace:
Dependency-driven trace-based network-on-chip simulation. In
Proceedings of the Third International Workshop on Network
on Chip Architectures, pages 31–36, New York, NY, USA,
2010. ACM.

[8] C. Hughes, V. Pai, P. Ranganathan, and S. Adve. Rsim:
Simulating shared-memory multiprocessors with ilp processors.
Computer, 35(2):40–49, 2002.

[9] A. B. Kahng, B. Lin, K. Samadi, and R. S. Ramanujam.
Trace-driven optimization of networks-on-chip configurations.
In Proceedings of the 47th Design Automation Conference,
pages 437–442, New York, NY, USA, 2010. ACM.

[10] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A.
Wood. Multifacet’s general execution-driven multiprocessor
simulator (gems) toolset. SIGARCH Comput. Archit. News,
33:92–99, November 2005.

[11] C. Nitta, M. Farrens, K. Macdonald, and V. Akella. Inferring
packet dependencies to improve trace based simulation of
on-chip networks. In Proceedings of the Fifth ACM/IEEE
International Symposium on Networks-on-Chip, NOCS ’11,
pages 153–160, New York, NY, USA, 2011. ACM.

[12] Z. Tan, A. Waterman, H. Cook, S. Bird, K. Asanović, and
D. Patterson. A case for FAME: FPGA architecture model
execution. In Proc. of the 37th Annual Int’l Symposium on
Computer Architecture, pages 290–301, 2010.

[13] F. Trivino, F. J. Andujar, F. J. Alfaro, J. L. Sanchez, and
A. Ros. Self-related traces: An alternative to full-system
simulation for nocs. In High Performance Computing and
Simulation (HPCS), 2011 International Conference on, pages
819 –824, july 2011.

