
TEMPLATE DESIGN © 2008

www.PosterPresentations.c
om

Attackboard: A Novel Dependency-Aware Traffic Generator

for Exploring NoC Design Space

Yoshi Shih-Chieh Huang, Yu-Chi Chang, Tsung-Chan Tsai, Yuan-Ying Chang and Chung-Ta King

Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

Table Minimization

Domain: NoC design space

 exploration

Proposal: A novel pattern-driven

 simulation mechanism

National Tsing Hua University, Hsinchu, Taiwan

More

about this

paper!

More about

PADS Lab

@NTHU CS

Trace-driven simulation is simple and

fast for exploring NoC design space.

For the consideration of accuracy,

traces with packet dependencies is

necessary.

However, these trace logs can be very

complicated and require large storage

space!

The BIG problem is size, while the

conventional trace compression

mechanism is not a good solution for

reducing the size of traces while

maintaining accuracy.

How to reduce size of traces

while maintaining accuracy?

• Each PE has its own BIG trace for

NoC operations

• Each BIG trace is actually a log of

the execution of the

corresponding State Machine

…

…….

…….

……

….
…...

…
….

…

…….
….

…….
…

S1

Sn

S2

…

S1

Sn

S2

…

S1

Sn

S2

…

codes

10KB codes may

result in more

than 1GB traces!

1GB trace

logs

state

machine

Attackboard uses small

tables to represent the state

machines

How to do?
• State transitions are triggered by

arrivals of packets

 Leverage packet dependency

info. in traces

 Focus on patterns of received

packets

Key idea #1
• Time-driven to pattern-driven

 Use packet arrival patterns to

replace the time sequencing

 Inject packets by the

sequencing of states

E
x
ec

u
ti

o
n
 f

lo
w

 o
f

p
ar

al
le

l
p
ro

g
ra

m

PE0 PE1 PE2 PE3

recv 1

recv 2

send 1

Interval

I

Packets Dependencies Injection Info.

1 1 0 0 (2, flit counts)

Attackboard Traffic Generator

(ATG)

1 1 0 0 traffic

Router

ATG

Network-on-Chip

current

receive

source

injection

info.

attackboard

router receive

status (CS)

1 1 0 0

Key idea #2
• Merge entries with the same

patterns

 Fold the repetitive patterns:

merge the entries with the

same packet dependencies

 Merge duplicated entries

Packets Dependencies Injection Info.

1 1 0 0 (2, flit counts)

Match the CS

with attackboard

Select the traffic

Packets

injecting,

forwarding and

receiving

START

Is traffic

generation interval

I’

expired?

Key idea #3:
• Match patterns with

multiple bloom filters
 Deny for sure,

allow for high

probability

 0 in the packet

dependencies will

be considered as

“don’t care”

 E.g. pattern “1110”

will match “1100”

when “1110” does

not exist in

attackboard

• Select the traffic in

injection info.
 The matched

result of

attackboard and

CS is a set of send

events

 3 ways to select

the traffic

1. Averaged

2. Circular Queue

3. Probability

• Simulate the packets

injection and

transmission
 Router changes its

CS at the arrival of

the packets

• I’ has not expired
 Keep simulating

packets

transmission

• I’ has expired
 Start a new

simulation flow

Emulate ATG on Tilera TILE64

Native processor

element

Tilera TILE64

Native processor

frequency

700 Mhz

Simulated topology 4×4 mesh network

Routing algorithm Dimension-order

Bandwidth 1 flit/cycle per port

Benchmark Intel MPI

Benchmarks

Parallel Object

Detection

1

10

100

1000

10000

100000

1000000

IMB

0

200

400

600

800

1000

1200

1400

1600

POD

Storage
space can
be greatly
reduced!

20% storage
space can be
reduced in
computation-
intensive
benchmark!

0

0.5

1

1.5

2

2.5

3

3.5

4

800 900 1000 1100 1200 1300 1400 1500 1600 1700

A
ve

ra
g

e
n

et
w

o
rk

 d
el

ay
 (

n
o

rm
al

iz
ed

)

Interval of traffic generation (I')

100

1000

5000

10000

Dependency

extraction

interval I

I and I’ should be properly
selected to give accurate
results

Parallel Object Detection

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1200 1210 1220 1230 1240 1250 1260 1270 1280 1290

 A
ve

ra
g

e
n

et
w

o
rk

 d
el

ay
 (

n
o

rm
al

iz
ed

)

Interval of traffic generation (I')

100

10K

15K

Dependency

extraction

interval I

In this case, I does not have
much impact compared with
POD.

Rebuild The State Machine Motivation

Key Question

Key Insights

Overview of Attackboard

Attackboard Simulation

Evaluation Setup

Storage Space Overhead

Accuracy Evaluation

More Information

IMB Broadcast

Packets Dependencies Injection Info.

1 1 0 0 (0, flit counts)

Packets Dependencies Injection Info.

1 1 0 0 (0, flit counts)

Packets Dependencies Injection Info.

1 1 0 0 (2, flit counts)

(0, flit counts)

