
Floodgate: Application-Driven Flow Control in
Network-on-Chip for Many-Core Architectures

Yoshi Shih-Chieh Huang†, Huan-Yu Liu†, Yuan-Ying Chang†,
Chung-Ta King†, and Shau-Yin Tseng‡

†Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
‡SoC Technology Center, Industrial Technology Research Institute, Hsinchu, Taiwan

†{yoshi, elmo, king}@cs.nthu.edu.tw, ‡tseng@itri.org.tw

ABSTRACT
With the prevalence of multi- and many-core architecture,
network-on-chip (NoC) is becoming the main paradigm for
on-chip interconnection. However, the performance of NoCs
can be degraded significantly if the network flow is not con-
trolled properly. Most previous solutions have tried to de-
tect network congestion by monitoring the hardware status
of the network switches or links. Unfortunately, such strate-
gies rely on the backpressure of the traffic flows for conges-
tion detection and may be too slow to respond. This pa-
per proposes a proactive strategy which predicts the global,
end-to-end traffic patterns of the running application and
takes preventive flow control actions to avoid congestions.
The proposed system entails an application-level prediction
table for accurate traffic prediction and a packet injection
scheduler for congestion avoidance. The proposed scheme is
evaluated by a trace-driven simulator with synthetic traffic
traces as well as a real application trace of an instance in the
SPLASH-2 benchmark. The results show the superior per-
formance of the proposed scheme with negligible execution
overhead.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
architecture and design

Keywords
network-on-chip, end-to-end traffic prediction, flow control,
congestion control

1. INTRODUCTION
With the introduction of many-core architecture for ad-

vanced MPSoC, network-on-chip (NoC) is becoming the main
paradigm for on-chip interconnection of the cores. NoCs not
only offer significant bandwidth but also provide outstand-
ing flexibility and scalability. There have already had many-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NoCArc ’11, December 4, 2011, Porto Alegre, Brazil
Copyright 2011 ACM 978-1-4503-0947-9 ...$10.00.

core processors on the market that adopt NoC as the com-
munication fabric. For example, Tilera’s TILE64 [3] uses a
2-D mesh network to interconnect sixty-four tiles and four
memory controllers.

Since the cores on the chip are connected by a network,
congestion and flow control are critical for the NoC perfor-
mance. If one or more routers in the network receive more
packets than they can handle, the queued packets may delay
or even block the flows in other routers, causing more queu-
ing delays and packet blockages. As a result, the amount of
packets that can be accepted to the network drops sharply
and the packets already in the network will experience long
delays [4].

To the best of our knowledge, there are few research works
on congestion control in NoCs. In [10], the switches ex-
change their load information with neighboring switches to
avoid hot spots where most packets will pass through. In
[12, 13], a predictive closed-loop flow control mechanism is
proposed, which predicts how many flits the router can ac-
cept in the next k time steps. However, it ignores the flits
injected by neighbor routers in the prediction period. In
[2, 11], a centralized, end-to-end flow control mechanism is
proposed. Nevertheless, it needs a special network, called
control NoC, to transfer OS control messages; it also relies
on blocked messages in the local buffer for packet injection
decisions. Flit-reservation flow control is also a switch-layer
flow control mechanism. Similarly, it requires a special look-
ahead network for booking the resources in the network [14].
In [15], the weights of virtual channels are adjusted based
on the estimated number of overlapped transmissions. The
prediction is based on the utilization of the ports of each
router.

These works detect network congestions by monitoring the
status of local hardware, such as buffer fillings, link utiliza-
tion, and the number of blocked messages. Unfortunately,
if congestion occurs somewhere else in the network, it will
take some time to detect it, often through the backpressure
of the network flow. Such an approach is too passive and
slow, and cannot respond to the congestion in time. Sim-
ilarly, when a core determines that the network is out of
congestion according to local hardware status and decides
to inject packets onto the network, other cores might still
experience congestion, causing more severe congestion.

In this paper, we consider NoC-based distributed-memory
many-core systems, i.e., the cores communicate with each
other via explicit send/receive instructions rather than im-
plicit communications through shared variables. To address

the congestion control problem in such systems, we propose
Floodgate, a proactive congestion detection and flow control
mechanism. The core idea is to predict the global, end-
to-end traffic in the NoC according to the data transmission
behavior of the running application. With the prediction, we
can control network injection to prevent congestions. Note
that our prediction scheme is based on the premise that the
running application exhibits certain repetitive communica-
tion patterns. Such a self-similarity traffic property can be
found in many applications [17], e.g., when executing a loop.
These patterns greatly affect the network states because ap-
plications are the sources of network traffic.
The main contributions of this paper are as follows. First,

we show that congestion control in NoC can be made more
effective by controlling the traffic at the source ends con-
sidering application behavior. Second, we demonstrate that
it is possible to proactively control the traffic at the source
ends for congestion avoidance if the end-to-end traffic can be
predicted. Third, we introduce the design of a table-driven
predictor/controller that not only captures and predicts the
data transmission behaviors in the application at runtime,
but also decides how to control the traffic at source ends.
Note that, since we predict and control traffic at the source
ends, the traffic is recorded before being injected to and
mixed in NoC. The proposed traffic predictor is not affected
even when multiple applications are running in the systems,
as long as they do not occupy the same cores.
This paper is organized as follows. In Section 2, a moti-

vating example is given to show the repetitive data trans-
mission behavior in applications. In Section 3, related works
are discussed. Next, we give a formal definition of the flow
control problem in Section 4. In Section 5, we present the
details of Floodgate, its overheads for implementation, and
the various ways to implement. Evaluations are shown in
Section 6. Finally, conclusions are given in Section 7.

2. MOTIVATING EXAMPLE
In this section, we show that data transmission behavior

in parallel programs appears to have repetitive patterns. We
use the LU matrix decomposition in the SPLASH-2 bench-
mark as an example. LU decomposition tries to factorize
a matrix to two matrices, one is a lower triangular matrix
and the other is a upper triangular matrix. The LU decom-
position kernel is ported to the TILE64 platform and run
on 4 × 4 tile, as the first diagram in Figure 1 shows. De-
tailed experimental setup is given in Section 6. We use 16
tiles to execute the application, and the routing algorithm is
X-Y dimensional routing. This program has been modified
to use massage passing only. In the following discussion,
we use the notation (source → destination) to describe the
transmission pairs.
Figure 1 shows the transmission trace of router 4. In the

second diagram, the traffic is mixed from the viewpoint of
the East. The mixed traffic is somewhat messy and hard
to predict. In previous works, the traffic prediction is made
mainly by checking the hardware status, such as the fullness
of buffers, the utilization of links, and so on. The hard-
ware status is affected by the mixed traffic as the diagram
shows. Irregular traffic makes it difficult to predict the net-
work workload based on the hardware status only.
However, when we extract the traffic between the pairs

(5 → 4), (6 → 4) and (7 → 4), they are more regular and
predictable, as the third to the fifth diagram show, with

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

0

5000

10000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

2
0
4

2
1
1

2
1
8

2
2
5

2
3
2

2
3
9

2
4
6

0

5000

10000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

2
0
4

2
1
1

2
1
8

2
2
5

2
3
2

2
3
9

2
4
6

East output East input

0

2000

4000

6000

1 8 5 2 9 6 3 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2 9 6

0

5000

10000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

2
0
4

2
1
1

2
1
8

2
2
5

2
3
2

2
3
9

2
4
6

East output East input

0

2000

4000

6000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

2
0
4

2
1
1

2
1
8

2
2
5

2
3
2

2
3
9

2
4
6

5 to 4

2000

4000

6000

0

5000

10000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

2
0
4

2
1
1

2
1
8

2
2
5

2
3
2

2
3
9

2
4
6

East output East input

0

2000

4000

6000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

2
0
4

2
1
1

2
1
8

2
2
5

2
3
2

2
3
9

2
4
6

5 to 4

0

2000

4000

6000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

2
0
4

2
1
1

2
1
8

2
2
5

2
3
2

2
3
9

2
4
6

6 to 4

3000

0

5000

10000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

2
0
4

2
1
1

2
1
8

2
2
5

2
3
2

2
3
9

2
4
6

East output East input

0

2000

4000

6000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

2
0
4

2
1
1

2
1
8

2
2
5

2
3
2

2
3
9

2
4
6

5 to 4

0

2000

4000

6000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

2
0
4

2
1
1

2
1
8

2
2
5

2
3
2

2
3
9

2
4
6

6 to 4

0

1000

2000

3000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

2
0
4

2
1
1

2
1
8

2
2
5

2
3
2

2
3
9

2
4
6

7 to 4

0

2000

4000

6000

1 8 5 2 9 6 3 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2 9 6 3 0 7 4 1 8 5 2 9 6

0

5000

10000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

2
0
4

2
1
1

2
1
8

2
2
5

2
3
2

2
3
9

2
4
6

East output East input

0

2000

4000

6000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

2
0
4

2
1
1

2
1
8

2
2
5

2
3
2

2
3
9

2
4
6

5 to 4

0

2000

4000

6000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

2
0
4

2
1
1

2
1
8

2
2
5

2
3
2

2
3
9

2
4
6

6 to 4

0

1000

2000

3000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

2
0
4

2
1
1

2
1
8

2
2
5

2
3
2

2
3
9

2
4
6

7 to 4

0

2000

4000

6000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

2
0
4

2
1
1

2
1
8

2
2
5

2
3
2

2
3
9

2
4
6

4 to 5

0

5000

10000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

2
0
4

2
1
1

2
1
8

2
2
5

2
3
2

2
3
9

2
4
6

East output East input

0

2000

4000

6000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

2
0
4

2
1
1

2
1
8

2
2
5

2
3
2

2
3
9

2
4
6

5 to 4

0

2000

4000

6000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

2
0
4

2
1
1

2
1
8

2
2
5

2
3
2

2
3
9

2
4
6

6 to 4

0

1000

2000

3000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

2
0
4

2
1
1

2
1
8

2
2
5

2
3
2

2
3
9

2
4
6

7 to 4

Figure 1: The network topology and the traffic of
router 4 is tracked. The first diagram is all the traf-
fic input/output from router 4. The second to the
fourth diagrams show the decomposed traffic. Note
that the traffic relayed by router 4 is omitted. The
last one is the output traffic from router 4 to 5

the last diagram showing the output traffic (4 → 5). Each
transmission corresponds to an end-to-end data transmission
issued by the running application. From the figure, we can
see that the end-to-end data transmissions exhibit certain
repetitive patterns, since the application is executing simi-
lar operations during this interval. We can also see that the
communication patterns are quite similar but time-shifted.
This creates an opportunity to predict other end-to-end traf-
fic pairs by using an existing one. This part is left for further
study. Finally, we can see that applications usually transfer
data for a period and keep silent for another period.

By utilizing the repetitive traffic patterns based on appli-
cation behavior, we can predict the end-to-end data trans-
missions accurately by recording the history. The traffic of
a given link in the network can be predicted by summing
all the predicted end-to-end data transmissions that pass
through this link. As we can predict the NoC traffic in the
next time interval, we can control packet injection at the
sources to regulate the traffic and avoid congestion in the
NoC

3. RELATED WORKS
In [10], information of the routers is exchanged with each

other for deciding the routing path to avoid congestion. The
control information is sent locally and cannot reflect the
status of the whole network. In [12, 13], network conges-
tions are predicted based on their proposed traffic source and
router model. By using this model, each router predicts the
availability of its buffer ahead of time, i.e., how many packet
flits a router can accept currently. The traffic source can-
not inject packets until the availability is greater than zero.
They predict traffic from the router perspective. In [8, 19,
20, 21], a congestion control scenario is proposed that models
flow control as a utility optimization problem. These works
propose an iterative algorithm as the solution to the maxi-
mization problem. In [11], they use operating system (OS)
and let system software control the resource usage. In [2],
they proposed a NoC communication management scheme
based on a centralized, end-to-end flow control mechanism
by monitoring the hardware status. All the works above
need a dedicated control NoC to transfer OS-control mes-
sages and a data NoC for delivering data packets. In [9], the
authors add some extra hardware to support a distributed
HW/SW congestion control technique. In [15], they use a
dedicated core as the master core to control the weights of
the virtual channels. Each destination node feedbacks its
status to the master core periodically via the control net-
work. This work also introduces the global and end-to-end
communication concepts. However, it still relies on each
port to estimate the number of overlapped links.
In contrast to the works mentioned above, our work makes

predictions from the application layer rather than the link
layer. Intuitively, our approach is more effective because
application generates traffic and congestion-control must be
based on application behavior. Note that there is no uni-
versally accepted definition of network congestion [18]. In
[22], link utilization of a router is used as the indicator. In
[23], the queuing delay is used. We take link utilization as
a congestion measure in this paper. Similarly, latency is a
commonly used performance metric that can be interpreted
in different ways [4]. We use the definition that the time
elapsed from the message header is injected into the net-
work at the source node to the tail of the packet is received
at the destination node.

4. PROBLEM FORMULATION
The utilization of a link ei at the t-th time interval is

defined as:

Utili(t) =
Di(t)

T ·W 0 ≤ Utili ≤ 1

where Di(t) denotes the total data size transmitted by ei
at the t-th time interval. The period of a time interval is
defined as T seconds and W is the maximum bandwidth of
a communication link. Thus T · W denotes the maximum
possible data size transmitted in one time interval. Besides,
we assume that one core run one task at most.
To prevent network from being congested, we need to pre-

dict possible traffic at the t-th time interval in advance.
With the prediction, we can schedule the packet injection
effectively and avoid network congestion to improve the av-
erage packet latency. Assume that λ is the average packet
latency, and texec is the total execution time without any
flow control. Assume also that λ′ is the average packet la-

Dest. LRU Data Size G4 G3 G2 G1 G0

5 0 256 5 3 1 2 4

8 2 128 3 3 0 3 3

10 1 512 2 2 2 2 2

13 3 64 5 4 3 5 4

index LRU Gp

54253 5 0

44044 13 4

… 13 4

53124 31 2

31263 12 2

G4 to G0 : the transmission history pattern
Gp : the traffic we predict to transmit

at the next time interval

Pattern history

Indexed by L1-table

Figure 2: An example of a L1- and L2-table. The
columns G4 to G0 record the quantized transmitted
data size of the last 5 time intervals. L2-table is
indexed by the transmission history pattern G4 to
G0. The corresponding data size level Gp is the value
predicted to transmit in the next time interval

tency and t′exec is the total execution time with our proposed
flow control. Our goal is to maximize λ−λ′ and texec−t′exec.

5. FLOODGATE DESIGN
In this section, we present the system design of Flood-

gate. The design consists of two parts: (1) predicting global,
end-to-end network traffic by using a table-driven predictor,
and (2) making traffic control decisions with an extra ta-
ble, which records the delayed transmissions. The traffic
prediction method in part (1) is originally proposed in [7].
However, that work only discusses how to monitor and pre-
dict network traffic, without considering how to react and
control. In this paper, we focus more on using the informa-
tion obtained from part (1) to perform traffic control in part
(2).

5.1 Background
To simplify the discussion, we assume a 2D mesh topol-

ogy in the NoC with a size of N = M × M . Note that
our approach is independent of the topology and the size of
the network. Each tile consists of a processor core, a mem-
ory module and a router. We assume that the router has 5
input and 5 output ports and a 5× 5 crossbar. Each cross-
bar contains five connections: east, north, west, south and
the local processor. Each connection consists of two uni-
directional communication links for sending and receiving
data, respectively. Deterministic routing is assumed so that
the path between a source and a destination is determined
in advance. This is the most common type of routing in the
current NoC.

5.2 Network Interface Design
To support the prediction and feed the data back to the

centralized controller, the network interface of a core needs
the following supports.

5.2.1 L1-Table: Pattern recorder
A table-driven predictor is employed to record the traffic

of the past history. The history is then used to predict the
data size and the destination of the outgoing traffic from
each router in the next time interval. Each router maintains
two hierarchical tables for tracking and predicting the data
transmission. The first-level table (L1-table) as shown in
Figure 2 tracks all output data transmissions. Each router

0 1 2 3

0 1 0 1 0

1 1 1 1

2 1 0 0 0

3 1 1 0 0

Figure 3: An example of the gates of core (1, 1)

here uses only four entries to record transmission destina-
tions. This is because a core may only communicate with
a subset of all the cores [7], and the destination entries can
be replaced by the Least Recently used (LRU) replacement
policy for reducing the size of the table.

5.2.2 L2-Table: Pattern matcher
The history recorded above is then matched against a

second-level table (L2-table). The matching entry will con-
tain a traffic value, which can be used to predict the traffic
for the next time interval. Specifically, at the beginning of
the t-th time interval, the transmission history recorded in
the L1-table is used to index the L2-table to get the pre-
dicted transmission data size at the t-th time interval. At
the end of the t-th time interval, when an output trans-
mission is issued by the processor core, the destination and
data size are recorded in L1-table. The data size is quantized
and recorded in G0. The columns from G0 to Gn records
the quantized transmitted data size of the last n + 1 time
intervals. The two tables are updated at the end of each
predefined time interval. After checking the prediction, the
value of the data size counter in the L1-table is quantized
and shift into G0. One important optimization is based on
our key observation as shown in the motivating example.
That is, different cores tend to have repetitive behaviors
but at different times. This leads to the use of only one
L2-Table as the shared-pattern matcher among all cores to
reduce the overhead.

5.2.3 Updating operations
The updated transmission history in the L1-table is used

to index the L2-table and retrieve the predicted data size
that will be transmitted in the next time interval. If the
transmission history cannot be found in the L2-table, the
system will either create a new entry or replace the existing
entry by LRU in the L2-table. It then uses the last value
(G0) as the predicted transmission data size. The recorded
transmitted data sizes in the L1-table are used to check the
accuracy of the prediction made at the last time interval.
If the prediction is wrong, the value of Gp at the L2-table
for the corresponding transmission history pattern will be
modified to the data size level recorded in L1-table.

5.2.4 Gates ON/OFF
Each network interface maintains an array for represent-

ing whether the gate to a destination is ON or OFF. Figure
3 shows an example of the gates of core (1,1). An entry of
1 stands for Gate ON, and 0 stands for Gate OFF. If
Gatex,y is set as 0 at the t-th time interval, it means that
this core cannot inject packet flits to corex,y.

5.3 Floodgate Administrator

5.3.1 Design concepts

t-1 t t+1

Delayed Predicted

(0,2) !"#$%&'() (0,3) !"#$#&'%#

(1,0) !"($*&'+#

(1,2) !"*$*&'*#

Control Tables at time t

(0,2) !"#$%&

(1,2) !"*$%&

0 1 2 3

0

1

2

3

timeline

(a)

(b)

(0,3) !"#$#&

(1,0) !"($*&

(1,2) !"*$*&

Figure 4: An example of the tables of Floodgate at
time t. (a) shows the delayed and predicted trans-
missions, and the corresponding visualized figure.
The solid line stands for delayed transmission, and
the dash line stands for the predicted transmissions.
(b) shows the perspective of timeline

Given the predicted end-to-end traffic for the next time in-
terval, it is easy to calculate the total traffic running through
each link in the NoC during that period. If the predicted to-
tal traffic exceeds a threshold, which is usually a percentage
of the physical capacity of the link, a network congestion
is likely to occur. A decision thus has to be made as to
which end-to-end transmissions should be throttled to avoid
congestion. A plausible solution is to apply the Shortest
Job First (SJF) strategy, i.e., those transmissions with the
shortest transmission times are allowed to proceed first. Of
course, this strategy will create starvation, but it can be
solved using priority aging. The priority of a transmission
becomes higher if it is delayed longer. These issues and so-
lutions have been discussed extensively [16]. It follows that
Floodgate needs to maintain a table for recording the delayed
transmissions and the predicted transmissions.

1. A transmission can only be allowed if all the links on
its routing path do not have their predicted total traffic
exceeding a capacity threshold.

2. Every link is examined and the high priority transmis-
sions are selected first.

3. The priority of a transmission is higher if its transmis-
sion time is shorter or if it is delayed longer.

Next, we use an example to illustrate the rules.

5.3.2 An illustrative example
Take Figure 4 as an example. At the (t-1)-th time inter-

val, there are two transmissions (0, 2) → (0, 1) and (1, 2) →
(2, 1). The former is delayed and the latter is allowed to
transmit. Next, at the t-th time interval, by the aggregated
prediction data, transmissions of (1, 0) → (3, 2), (1, 2) →
(2, 2), and (0, 3) → (0, 0) are predicted to happen between
time interval t and t+1. For the former two transmissions,
if the overlapped links do not exceed the link capacity, both
are allowed to transmit according to rule 1. Otherwise, the
one with a heavier workload is delayed, and the other is pre-
ferred according to rule 2. However, the lighter transmission
still needs to satisfy rule 1. The two rules implement the

shortest-job-first strategy and minimize the waiting time.
Similarly, the transmission (0, 3) → (0, 0) is preferred over
(0, 2) → (0, 1). However, according to rule 3, the latter has
been delayed for one time interval, so it has a higher priority.
This rule avoids starvation.

5.4 Implementation of Floodgate
Floodgate administrator is responsible for making the de-

cisions and sending the control signals to all nodes. The
prediction data can be aggregated to a place via the control
network periodically. This architecture is similar to [15], and
the details of designing the hardware is deeply discussed. In
this paper, a dedicated core is used as the master core to
control the gates in all the nodes. The concept of dedicating
a core to do the controlling, monitoring, and debugging are
also discussed in [5]. By dedicating one core to do the flow
control, no extra control logics are required and thus reduce
the costs. With different target platform, different imple-
mentation of one bit requires different number of transistors.
For example, 6 transistors are required with SRAM imple-
mentation. However, with flip-flop implementation, which is
mostly used in ASIC design, each bit may requires 60 tran-
sistors. These implementation details are left to our tech-
nical report due to the page limitation, and we discuss the
architectural design in this paper. For the details and the
hardware overhead estimation, please refer to the technical
report [6].

5.4.1 Prediction errors
Another practical problem is that what if error prediction

occurs. Certainly, since Floodgate forbids a source to inject
data into the network once the routing path is predicted as
congested. However, if the prediction is error the links may
result in under-utilized or over-utilized.
In practice, there is an additional 2-bit saturating counter.

If the prediction is accurate, the pattern-oriented predictor
will be used in Floodgate. However, if Floodgate has a prede-
fined number of continuous error prediction, it means that
currently running tasks tend not to have repetitive behav-
iors as the history records, so the prediction mechanism will
be switched to last value prediction, i.e., always guess that
the next time interval has almost the same traffic volume
as previous time interval, and temporarily prevents the pat-
tern table from being modified. This is based on the obser-
vation that applications tend to transfer data for a period.
Floodgate will change its built-in predictor according to the
current situations to avoids some applications which have
intermittent repetitive behaviors.

6. EXPERIMENTAL RESULTS

6.1 Simulation Setup
The PoPNet network simulator [1] is used for our simula-

tions and the traces are generated from TILE64. The data
transmission traces record the packet injection time, the ad-
dress of the source router, the address of the destination
router and the packet size. The detailed configuration of
simulation is provided in Table 1. A link ei is considered as
congested in t-th time interval if Utili(t) ≥ 0.8 [22].
The original data transmission traces are altered by Flood-

gate, and this results in that some transmissions are delayed
for some periods so as to avoid congestion. The experimen-
tal results presented in the following show that Floodgate

Table 1: Simulation Configurations.
Parameters Setting
Network Topology 4 × 4 mesh
Flit size 8 bytes
Virtual Channel 3
Buffer Size 12 flits
Routing Algorithm X-Y routing
Bandwidth 4 flits/cycle
Prediction Interval 1000 cycles
Threshold 0.8

Table 2: A summary for the latency improvement
of a real application trace, in terms of cycle.

Original Floodgate Reduction
Avg. latency 2410.79 771.858 3.12
Max. latency 5332 3242 1.64

exhibits huge performance improvement.

6.2 Real Application Traffic Trace
The Tilera’s TILE64 platform is used to run the bench-

mark programs and collect the data transmission traces. We
use SPLASH-2 blocked LU decomposition as our benchmark
program. The packet size ranges from 6 flits to 30 flits. We
sample the traffic from TILE64 every 1000 cycles, and so is
the prediction interval.

As shown in Table 2, the average packet latency drops
from 2410.79 cycles to 771.858 cycles and the maximum
packet latency drops from 5332 cycles to 3242 cycles. The
significant performance improvement origins from that we
predict traffic workload in the next interval and delay some
packet injection to avoid congestion. As depicted in Figure
5 (a), the packet latencies without flow control range be-
tween 0 cycles and 5500 cycles. However, with Floodgate,
the packet latencies range between 0 cycles and 3300 cycles.
These packet latencies have decreased violently so that the
histogram shifts to the left side.

To bear up our conviction, Figure 6 demonstrates more
details about the network congestion. We set the conges-
tion threshold as 40 flits/link/cycle. In Figure 6 (a) without
flow control, the maximum workload is far apart from the
threshold, and consequently causes severe network conges-
tion. The result shows that the average injected number of
flits per cycle is 35.6 with standard deviation 3.99, which is
well controlled under our target, 40 flits.

6.3 Synthetic Traffic Trace
We not only evaluate Floodgate with the real application

traffic, but also with the synthetic traffic. In [17], the au-
thors state that injected network traffic possesses self-similar
temporal properties. They use a single parameter, the Hurst
exponent H, to capture temporal burstiness characteristic of
NoC traffic. Based on this traffic model, we synthesize our
traffic traces as shown in Table 3. These parameters are cho-
sen based on [17]. Table 1 in [17] shows a part of benchmark
values of Hurst exponent H. In this paper, we choose five
values among them for evaluations (art, jpeg, mpeg2, mgrid,
8b encode). Similarly, we sample the trace every 1000 cycles
and so is the prediction interval. The average packet latency
and the maximum latency both drop down significantly.

To conclude, relative large H values indicate highly self-
similar traffic and thus predictable, so Floodgate performs
better. Note that the average packet size also increases with

0

20

40

60

80

100

120

140

160

1
0

0

3
0

0

5
0

0

7
0

0

9
0

0

1
1

0
0

1
3

0
0

1
5

0
0

1
7

0
0

1
9

0
0

2
1

0
0

2
3

0
0

2
5

0
0

2
7

0
0

2
9

0
0

3
1

0
0

3
3

0
0

3
5

0
0

3
7

0
0

3
9

0
0

4
1

0
0

4
3

0
0

4
5

0
0

4
7

0
0

4
9

0
0

5
1

0
0

5
3

0
0

5
5

0
0

0

50

100

150

200

250

300

350

400

1
0

0

3
0

0

5
0

0

7
0

0

9
0

0

1
1

0
0

1
3

0
0

1
5

0
0

1
7

0
0

1
9

0
0

2
1

0
0

2
3

0
0

2
5

0
0

2
7

0
0

2
9

0
0

3
1

0
0

3
3

0
0

3
5

0
0

3
7

0
0

3
9

0
0

4
1

0
0

4
3

0
0

4
5

0
0

4
7

0
0

4
9

0
0

5
1

0
0

5
3

0
0

5
5

0
0

(a)

(b)

Packet latency (cycle)

Packet latency (cycle)

#
 o

f
p

a
ck

e
ts

#

 o
f

p
a

ck
e

ts

Figure 5: Histograms of the packet latencies without
(a) and with (b) the proposed flow control in terms
of cycles. In (b), the latencies slow down drastically

Table 3: A summary of the latency improvement for
the synthetic traffic traces. Latencies are in terms
of cycles. It shows that Floodgate leads to the huge
reduction in the average latency and the maximum
latency.
Hurst value 0.576 0.661 0.768 0.855 0.978
Original avg latency 3553 3597 3649 3666 3615
Improved avg latency 482.5 467.8 387.7 413 417.6
Reduction 7.36 7.69 9.41 8.88 8.66
Original max latency 7623 7623 7710 7658 7714
Improved max latency 1591 1532 1016 1054 1037
Reduction 4.79 4.98 7.59 7.27 7.44
Original sim time 8580 8510 8550 8480 8450
Improved sim time 8280 8260 7690 7781 7731

H because of the burstiness, so the reduction does not arise
linearly with H.

7. CONCLUSION
In this paper, we propose an application-driven flow con-

trol Floodgate for packet-switched networks-on-chip. By
tracking and predicting the end-to-end transmission behav-
ior of the running applications, we can limit the traffic in-
jection when the network is heavily loaded. By delaying
some transmissions efficiently, the average packet latency
can be decreased significantly so that the performance can
be significantly improved. In our experiments, we adopt real
application traffic traces as well as synthetic traffic traces.
The experimental result shows that our proposed flow con-
trol decreases the average packet latency and the maximum
latency effectively.

8. REFERENCES
[1] N. Agarwal, T. Krishna, L. Peh, and N. Jha. Garnet: A detailed on-chip

network model inside a full-system simulator. In Proceedings of International
Symposium on Performance Analysis of Systems and Software, 2009.

[2] P. Avasare, J.-Y. Nollet, D. Verkest, and H. Corporaal. Centralized
end-to-end flow control in a best-effort network-on-chip. In Proc. 5th ACM
internatinoal conference on Embedded software, 2005.

500

1000

1500

2000

2500

3000

3500

4000

4500

M
a
x

 w
o
rk
lo
a
d

 o
f
li
n
k

 (
fl
it
s)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0
0

1
1
1

1
2
2

1
3
3

1
4
4

1
5
5

1
6
6

1
7
7

1
8
8

1
9
9

2
1
0

2
2
1

2
3
2

2
4
3

2
5
4

2
6
5

2
7
6

2
8
7

2
9
8

3
0
9

M
a
x

 w
o
rk
lo
a
d

 o
f
li
n
k

 (
fl
it
s)

Time (cycles)

(a) Original max workload of link

20

40

60

80

100

120

140

160

180

200

M
a
x

 w
o
rk
lo
a
d

 o
f
li
n
k

 (
fl
it
s)

0

20

40

60

80

100

120

140

160

180

200

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0
1

1
1
1

1
2
1

1
3
1

1
4
1

1
5
1

1
6
1

1
7
1

1
8
1

1
9
1

2
0
1

2
1
1

2
2
1

2
3
1

2
4
1

2
5
1

2
6
1

2
7
1

2
8
1

2
9
1

3
0
1

3
1
1

M
a
x

 w
o
rk
lo
a
d

 o
f
li
n
k

 (
fl
it
s)

Time (cycles)

(b) Max workload under flow control

Figure 6: The maximum workload of links in the
network without (a) and with (b) the proposed flow
control in terms of cycles

[3] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay,
M. Reif, L. Bao, J. Brown, M. Mattina, C.-C. Miao, C. Ramey,
D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks, D. Khan,
F. Montenegro, J. Stickney, and J. Zook. Tile64 - processor: A 64-core soc
with mesh interconnect. In Proc. Digest of Technical Papers. IEEE International
Solid-State Circuits Conference ISSCC 2008, pages 88–598, Feb. 3–7, 2008.

[4] J. Duato, S. Yalmanchili, and L. Ni. Interconnection networks. pages
428–431, 2002.

[5] G. He, A. Zhai, and P. Yew. Ex-mon: An architectural framework for
dynamic program monitoring on multicore processors. In The Twelfth
Workshop on Interaction between Compilers and Computer Architectures, Interact-12,
2008.

[6] Y. S.-C. Huang, C.-K. Chou, C.-T. King, and S.-Y. Tseng. Area overhead
estimation for table lookup implementation in chip design. Technical
report, 2010.

[7] Y. S.-C. Huang, C.-K. Chou, C.-T. King, and S.-Y. Tseng. Ntpt: On the
end-to-end traffic prediction in the on-chip networks. In Proc. 47th ACM
IEEE Design Automation Conference, 2010.

[8] F. Jafari, M. S. Talebi, M. H. Yaghmaee, A. Khonsari, and
M. Ould-Khaoua. Throughput-fairness tradeoff in best effort flow control
for on-chip architectures. In Proc. 2009 IEEE International Symposium on
Parallel and Distributed Processing, 2009.

[9] T. Marescaux, A. Rångevall, V. Nollet, A. Bartic, and H. Corporaal.
Distributed congestion control for packet switched networks on chip. In
ParCo, 2005.

[10] E. Nillson, M. Millberg, J. Öberg, and A. Jantsch. Load distribution with
the proximity congestion awareness in a network on chip. In Proc. Design,
Automation, and Test in Europe, page 11126, 2003.

[11] V. Nollet, T. Marescaux, and D. Verkest. Operating-system controlled network
on chip. 2004.

[12] U. Ogras and R. Marculescu. Analysis and optimization of
prediction-based flow control in networks-on-chip. ACM Transactions on
Design Automation of Electronic Systems, 2008.

[13] U. Y. Ogras and R. Marculescu. Prediction-based flow control for
network-on-chip traffic. In Proc. 43rd ACM IEEE Design Automation Conference,
pages 839–844, 2006.

[14] L. Peh and W. Dally. Flit-reservation flow control. In High-Performance
Computer Architecture, 2000. HPCA-6. Proceedings. Sixth International Symposium
on, pages 73–84. IEEE, 2002.

[15] A. Sharifi, H. Zhao, and M. Kandemir. Feedback control for providing qos
in noc based multicores. In Proc. Design, Automation, and Test in Europe, 2010.

[16] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts.
Wiley Publishing, 8th edition, 2008.

[17] V. Soteriou, H. Wang, and L.-S. Peh. A statistical traffic model for
on-chip interconnection networks. In Proc. 14th IEEE International Symposium
on Modeling, Analysis, and Simulation, 2006.

[18] K. Srinivasan. Congestion control in computer networks. 1991.

[19] M. S. Talebi, F. Jafari, and A. Khonsari. A novel flow control scheme for
best effort traffic in noc based on source rate utility maximization. In
MASCOTs, 2007.

[20] M. S. Talebi, F. Jafari, A. Khonsari, and M. H. Yaghmae. A novel
congestion control scheme for elastic flows in network-on-chip based on
sum-rate optimization. In ICCSA’07: Proceedings of the 2007 international
conference on Computational science and its applications, pages 398–409, Berlin,
Heidelberg, 2007. Springer-Verlag.

[21] M. S. Talebi, F. Jafari, A. Khonsari, and M. H. Yaghmaeem. Best effort
flow control in network-on-chip. In CSICC, 2008.

[22] J. van den Brand, C. Ciordas, K. Goossens, and T. Basten.
Congestion-controlled best-effort communication for networks-on-chip. In
Proc. Design, Automation, and Test in Europe, 2007.

[23] J. Yuho, Y. Ki Hwan, and K. Eun Jung. Adaptive data compression for
high-performance low-power on-chip networks. In Proc. 41st annual
IEEE/ACM International Symposium on Microarchitecture, 2008.

