
Parallel Implementation and Performance Prediction of Object Detection in Videos

on the Tilera Many-core Systems

Ya-Fei Hung, Shau-Yin Tseng

SoC Technology Center

Industrial Technology Research Institute

Hsinchu, Taiwan 310

{yafeihung, tseng}@itri.org.tw

Chung-Ta King, Huan-Yu Liu, Shih-Chieh Huang

Department of Computer Science

National Tsing Hua University

Hsinchu, Taiwan

king@cs.nthu.edu.tw

Abstract—Object detection plays an important role in in-
telligent video analysis. Unfortunately, its heavy computational
complexity makes it very difficult to process in real time. Some
recent studies use multi-core platforms to achieve the required
performance. In this paper, we study the problem under the
context of many-core platforms, e.g. for application-specific,
embedded systems. We first show how object detection can be
parallelized for many-core platforms and then discuss how its
performance can be predicted for embedded system designs.
The parallel algorithm is verified with a real implementation
on a 64-core TILERA. Our implementation achieves a speedup
of 37.20 with 56 cores and a processing rate of 18 frames
per second for full-HD (1920 ∗ 1080) videos. Our performance
prediction equation is also evaluated using the implementation
and the predicted performance is very close to real results.

Keywords-parallel processing; object detection; speedup; per-
formance prediction; many-core architecture;

I. INTRODUCTION

With the advances of IC technologies, multi-core proces-

sors are now commonplace. Many researchers have tried to

use multi-core platforms to implement applications requiring

a large amount of calculations, such as object detection

and object tracking [1], [3], [4] , and achieve satisfactory

results. Looking forward, the number of cores per chip will

increase, while at the same time applications require even

more computing powers, e.g. processing full-HD videos.

It is necessary to understand how the many cores can

be efficiently utilized and how applications scale with the

increasing number of cores. More importantly, we need to be

able to predict the performance on such many-core systems

so as to use the resources mostly efficiently.

In this paper, we use object detection in videos as an

example to study its parallel implementation on many-core

platforms and the resultant performance. We also derive its

performance equation for predicting the performance and de-

signing the system. The challenges in deriving the equation

are the need to account for the overhead of the connection

between cores during execution and the different degree of

parallelism on different parts of the algorithm. We discuss

how these difficulties are overcome in our equation. The

parallel algorithm is verified with a real implementation on

a 64-core TILERA. Our implementation achieves a speedup

of 37.20 with 56 cores and a processing rate of 18 frames

per second for full-HD (1920 ∗ 1080) video.

The remainder of the paper is organized as follows. In

Section II, we introduce the background of object detection.

In Section III, we describe our object detection algorithm. In

Section IV, we discuss how to parallelize the object detection

algorithm. In Section V, we describe our experiments using

a real implementation on the TILERA system. In Section

VI, we compare our work with previous works. Section VII

is the conclusion.

II. BACKGROUND

Object detection is to detect where moving objects are in

a video. The most common object detection technique is to

subtract the background from the input video frames. The

result of this step is called background difference.

We denote a pixel (x, y) in the current frame to be C(x, y)
and that in the background as B(x, y). Then, the background

difference Db(x, y) of pixel (x, y) is calculated as follows.

Db(x, y) = |C(x, y) − B(x, y)| (1)

Apparently, if Db(x, y) 6= 0, then the pixel (x, y) is

contained within an object.

Calculating frame difference is also a commonly used

technique in object detection. Frame difference is to cal-

culate the difference of temporally adjacent frames. This

information is used to observe the movement of objects.

Again, let a pixel (x, y) in the current frame be C(x, y) and

that in the previous frame be P (x, y). The frame difference

D(x, y) of pixel (x, y) is given below.

D(x, y) = |C(x, y) − P (x, y)| (2)

After identifying which pixels may belong to an object,

the next step is to remove noises and to separate objects

that are close to each other but regarded as one object.

The general methods to separate the objects are erosion and

dilation. And the method to remove noises is low-pass filter.

2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks

978-0-7695-3908-9/09 $26.00 © 2009 IEEE

DOI 10.1109/I-SPAN.2009.113

563

a b c

d e f

i j k

Figure 1. The mask window of erosion.

a b c d e

e g i j k

l m n o p

q r s t u

v w x y z

Figure 2. The mask window of dilation.

Erosion and dilation are usually executed on binary im-

ages. We denote a pixel (x, y) in the input binary image as

Bin(x, y). For each pixel Bin(x, y), we consider a window

mask such as that shown in Figure 1. In the figure, e is

Bin(x, y) and a, b, c, d, f, i, j, k are the neighbors. If all the

nine pixels are 1, then the value of Bin(x, y) is 1. Otherwise,

Bin(x, y) is 0. Dilation is just the opposite. For each pixel

Bin(x, y), we consider a window mask such as that shown

in Figure 2. The pixel n is Bin(x, y). In the binary image,

if Bin(x, y) is 1, then all the pixels within this 5 ∗ 5 mask

window are 1.

The low-pass filter is to average all values within the mask

window to be the value of the center pixel. Figure 3 shows an

example of the low-pass filter with the size of mask window

to be 5 ∗ 5.

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

1
25

Figure 3. The window mask of low-pass filter.

III. OBJECT DETECTION ALGORITHM

In this section, we describe the object detection algorithm

used in this paper, which is according to the sequential

algorithm proposed in [2]. That algorithm is shown in Figure

4. The main procedure consists of three parts:

1) Frame difference and background difference.

2) Post-processing.

3) Background update.

The details are described in the following subsections.

Figure 4. The object detection algorithm.

A. Frame difference and background difference

The first step in the algorithm is to calculate the frame

difference between the previous frame and the current frame.

The result of frame difference is used to calculate stationary

indexes (SI counter in Figure 4), which indicate how many

frames the pixels have been stationary. This information is

used for background update discussed in section III-C.

Then, we compute the background difference to identify

the objects. The results are binarized by a threshold Tb.

Bin(x, y) =

1, if Db(x, y) ≥ Tb

0, if Db(x, y) < Tb

(3)

Bin(x, y) is the binary image after calculation and

Db(x, y) is the result of background difference. In the binary

image, if the value of the pixel is 1, this pixel is inside an

object; otherwise it is in the background.

B. Post-processing

The second step is to post-process of the binary image

Bin(x, y). The goal is to separate the connected objects and

filter out the noises. In this step, we execute erosion first,

followed by dilation and low-pass filter.

In our algorithm, the size of the mask window of erosion

is 3∗3 and that of dilation is 5∗5. However, the mask window

of low-pass filter changes according to the inputs. By using

different sizes and shapes of the mask window for low-pass

filter with an appropriate threshold, we can filter out the

noises and smooth out the shape of the objects. Generally,

if the shape of an object is square, a square mask window

should be used. If the shape of an object is rectangle, a

564

rectangle mask window should be used. Moreover, for small

objects, the mask window should not be too large. However,

for large objects, the size of the window should be according

to the size of the noises. If the noises are small, we use small

mask windows. If the noises are large, we use large mask

windows to filter out the noises. For different inputs, we

can change the mask window of low-pass filter to get better

results.

C. Background update

The final step is to update the background based on the

stationary index, which indicates how long this pixel has

been stationary. We define a threshold Ts to determine how

long a pixel has been stationary. For example, suppose Ts is

set to 30. That means if a pixel has been stationary for 30
frames, it is classified as being in the background. Note that

Ts can change with different inputs and requirements. For

example, suppose that a person in the video stands talking

for some time. If we do not want the person to be classified

as background, the value of Ts should be larger.

Figure 5. A frame is partitioned into four regions for four cores.

IV. PARALLEL IMPLEMENTATION

In this section, we discuss our parallelization of the object

detection algorithm on many-core architectures. We adopt

the data partition strategy to parallelize the algorithm. Data

partition is to split up the input data into many partitions

and assign each partition to execute on one core.

In our implementation, if the input frame size is height∗
width, we divide it into core number partitions vertically,

where core number is the number of cores used. Figure 5

shows the partition method. To reduce the communication

overhead between cores, we fetch overlapping pixels at

the top and the bottom of each partition. The amount of

overlapping data to access is extern ∗width pixels. Figure

5 also shows the overlapping data. Note that the number of

extern is according to the mask window size of low-pass

filter. Each core, besides the cores executing the top and

bottom partitions of a frame, loads height∗width

core number+externwidth

pixels at the beginning. Hence, the amount of data in all

cores during execution is (height∗width)+extern∗width∗
(core number − 1) pixels.

By focusing on the data, we can derive an equation to

characterize the speedup of the parallel object detection

algorithm. First, the optimal speed up with core number

cores is core number. However, with reduplicated data to

process on the cores, the speedup of the many-core processor

would be limited as follows.

speed up =
core number

(extern∗(core number−1)
height

+ 1)
(4)

With different sizes of mask windows, we can calculate

and predict the speedups with different number of cores.

Figure 6 shows the predicted speedup using Equation (4).

The different curves show the speedup with different values

of extern. In the next section, the predicted speedups will

be compared with results from actual executions on real

machines.

Figure 6. The speedup predicted by Equation (4).

V. EXPERIMENTS

We have implemented our parallel object detection algo-

rithm on a 64-core TILERA. Each core runs at 700MHz with

a 16 KB L1 cache (8KB for instruction and 8KB for data)

and a 64 KB L2 cache. During execution, users can only use

56 among the 64 cores. The input video in our experiments

is in full-HD. After the video is input, we down-sample

it to 960 ∗ 540 and before output, up-sample the video to

1920∗1080. We used two videos in our experiments. Video

1 has a better result when the mask window of low-pass

filter is 15∗5 (see Figure 7 (a)), while video 2 is better with

a 5 ∗ 5 mask window (see Figure 7 (b)).

565

(a) Output of Video 1 (b) Output of Video 2

Figure 7. Outputs of the experiments.

For Video 1, the speedups with different cores and extern

are shown in Figure 8. When extern is 28, we can get the

best detection result. The processing speed is 10.2 frames

per second with full-HD videos and the speedup is 21.47
on 56 cores. For Video 2, the speedups with different cores

and extern are shown in Figure 9. When extern is 8, we can

get the best detection result. The processing speed is 18.1
frames per second with full-HD videos and the speedup is

37.2 on 56 cores.

Each curve in Figures 8 and 9 shows a different size of the

mask window of low-pass filter. The top curve corresponds

to extern = 8 (after down-sampling, the mask window size

is 5 ∗ 5). The bottom curve is for extern to be 28, with a

mask window of size 15 ∗ 5. Note that using more cores,

the overlapping data fetched by the cores also increase. For

example, when extern is 8, the redundant data fetched in the

2-core case are (8∗width) pixels and the redundant data of

56-core case are (55 ∗ 8 ∗ width) pixels. We can thus see

that using more cores, extern would have more effects upon

the speedup.

To compare the predicted speedups in Figure 6 and the

experimental data in Figures 8 and 9, we can see that they

are very close. This shows that Equation (4) can accurately

predict the speedup performance. For some cases, we can

get better speedups than those predicted. This is because the

fewer cores used, the more data would be in one core. In the

extreme case in which a single core is used, the amount of

data will be too large to fit into the cache. Some data must

be saved in the external memory and loaded into cache when

needed. This process will take time and thus slows down the

execution.

VI. COMPARISON WITH PREVIOUS APPROACHES

Many researchers have implemented object detection and

object tracking algorithms on multi-core platforms. In [4],

Trista et al. implemented articulated body tracking on In-

tel Xeon with eight cores. They experimented on VGA

(640 ∗ 480) video and obtained a 6.54 speedup with eight

cores. The parallelization strategy used was data domain

parallelization by frame and different particles.

Figure 8. The data of experiments of Video 1.

Figure 9. The data of experiments of Video 2.

In [1], Patricia et al. implemented moving object detection

on Intel XeonMP with eight cores. They segmented the

input frame into tens of regions and determined which pixel

having a closer relation with the object. They can process

51.1 frames per second using CIF (352 ∗ 288) videos and

achieve a speedup of 6.64.

In [3], Hernry et al. presented an implementation of object

tracking on an IC3D/Xetal SIMD processor, which consists

of 320 RISC processors. This is the only previous work that

used more than eight cores. The main method was to par-

allelize the histogram computation. When processing VGA

videos, their implementation can process object tracking at

30 frames per second.

In all these previous works, the input videos were

VGA, and most of them only use eight-core platforms.

In contrast, our parallel object detection algorithm can

process full-HD (1920 ∗ 1080) videos. Ours and [3] were

566

executed on many-core architectures. Table I. summarizes

the differences.

TABLE I. COMPARISON WITH PREVIOUS WORKS.

input size fps speed up with 8 cores

Trista et al. [4] VGA 6.54

Patricia et al. [1] CIF 51.1 6.64

Hernry et al. [3] VGA 30

our work full-HD 18.1 7.48

VII. CONCLUSION

In this paper, we discuss the design of a parallel object

detection algorithm for many-core architecture and the cor-

responding performance prediction equation. To achieve the

better result, we change the size of low-pass filter according

to the inputs. The algorithm is implemented and executed

on Tilera. It can achieve a processing speed of 18.1 frames

per second with full-HD videos and a speedup of 37.20
on 56 cores. The experiments also show that the predicted

speedups using our derived performance equation are very

close to the actual data. Therefore, we can use the equation

to predict the performance of this implementation.

We plan to extend this work by parallelizing applications

of different characteristics on the many-core architecture to

better understand such machines. We also plan to better

understand many-core systems, such as Tilera, to exploit

further opportunities to achieve an even higher speedups.

REFERENCES

[1] Patricia P. Wang, Wei Zhang, Jianguo Li, Yimin Zhang,
Realtime Detection of Salient Moving Object: A Multi-core
Solution, IEEE Proceedings of International Conference on
Acoustics, Speech, and Signal Processing,PP. 1481-1484, 2008.

[2] Shao-Yi Chien, Yu-Wen Huang, Bing-Yu Hsieh, Shyh-Yih
Ma, and Liang-Gee Chen, Fast Video Segmentation Algorithm
With Shadow Cancellation, Global Motion Compensation, and
Adaptive Threshold Techniques, IEEE Transactions on Multi-
media,PP. 732-748, 2004.

[3] Henry Medeiros, Xinting Gao and Johnny Park, A Parallel
Implementation of the Color-Based Particle Filter for Object
Tracking, Proceedings of the 6th ACM Conference on Embed-
ded Networked Sensor Systems, 2008.

[4] Trista P. Chen, Dmitry Budnikov, Christopher J. Hughes, and
Yen-Kuang Chen, Computer Vision on Multi-core Processors:
Articulated Body Tacking, Proceedings of IEEE International
Conference on Multimedia and Expo,PP. 1862-1865, 2007.

567

