
NTPT: On the End-to-End Traffic Prediction
in the On-Chip Networks

Yoshi Shih-Chieh Huang†, Kaven Chun-Kai Chou†, Chung-Ta King†, Shau-Yin Tseng‡

†Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
‡SoC Technology Center, Industrial Technology Research Institute, Hsinchu, Taiwan

†{yoshi, kavenc, king}@cs.nthu.edu.tw, ‡tseng@itri.org.tw

ABSTRACT
Power and thermal distribution are critical issues in chip
multiprocessors (CMPs). Most previous studies focus on
cores and on-chip memory subsystems and discuss how to
reduce their power and control thermal distribution by using
dynamic voltage/frequency scaling. However, the on-chip
interconnection network, or network-on-chip (NoC), is also
an important source of power consumption and heat genera-
tion. Particularly, the traffic flowing through the NoC affects
directly its power and thermal distribution. Unfortunately,
very few works discuss the dynamism of NoC. A key tech-
nique for NoC management is to capture its traffic patterns
and predict future behaviors. In this paper, we propose a
table-driven predictor called Network Traffic Prediction Ta-
ble (NTPT) for recording and predicting traffic in NoC. The
most unique feature of NTPT is its ability to predict end-to-
end traffic, rather than switch-to-switch traffic. Thus, more
application behaviors can be captured and monitored. Eval-
uations on Tilera’s TILE64 show that NTPT has very high
prediction accuracy. Analyses also show that it incurs a low
area overhead and is very feasible.

Categories and Subject Descriptors
B.4 [Input/output and data communications]: Proces-
sors

General Terms
network-on-chip, many-core, end-to-end traffic prediction,
power management

1. INTRODUCTION
With the progress of VLSI technology, the number of cores

on a chip multiprocessor (CMP) keeps increasing. To inter-
connect the many cores on the chip, perhaps to the thou-
sands, a Network-on-Chip (NoC) is essential. For example,
Tilera’s TILE64 uses a 2D mesh network to interconnect 64
general-purpose tiles with supports for explicit tile-to-tile

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2010, June 13-18, 2010, Anaheim, California, USA.
Copyright 2010 ACM ACM 978-1-4503-0002-5 ...$10.00.

communication. As NoC becomes one of the most critical
components on a CMP, its design and behavior affect every
aspect of the CMP, from design complexity and chip area
to run-time performance, power consumption, and thermal
distribution. Particularly, NoC is becoming a major source
of power consumption and heat generation on chip [4, 8].
When packets go through a switch of the NoC, power will
be consumed by the switch and heat will be generated. If
it is possible to predict the traffic flowing through a spe-
cific switch in the following time interval, we can adjust its
power mode accordingly [7] to save power while maintaining
the performance.

Predicting traffic for NoC is challenging, especially from
the perspective of each individual switch. For one thing,
traffic generated by one core may be consumed by a core at
the other end of the NoC, going through several switches in
between. The intermediate switches must know the end-to-
end communications to correctly predict the through traffic
for the next time interval. This in turn requires knowledge of
the running application. Previous works on switch-to-switch
traffic prediction [6] are limited in that they do not know any
application information and make predictions based only on
the states of the switches, e.g., the buffer status. The pre-
dictions are at most passive and reactive with a local view.
It is difficult to anticipate changes in traffic behaviors, such
as phase changes in the application or bursts in the traffic,
and react accordingly in time. In this paper, we focus on
the end-to-end (E2E) traffic of the NoC.

Since most prediction techniques are based on past his-
tory, given that there is no knowledge of future behavior,
another challenge in predicting traffic of NoC is to capture
the past traffic behaviors with the minimal resources. In this
work, we propose to use a small table in the network inter-
face (NI) of each tile to record the traffic and help prediction.
The proposed Network Traffic Prediction Table (NTPT) can
predict the end-to-end traffic in a NoC. Inspired by the 2-
level branch predictor [10], we use a local predictor and a
global predictor. In the local predictor, prediction is based
on the last value. On the other hand, the global predictor
uses a table to record transmission patterns, which are then
used to index the prediction value.

The main challenge of the design for NTPT is to reduce
the size of the tables while maintaining high prediction accu-
racy. We will discuss in detail how this issue is addressed in
our design. Our discussions are based on the TILE64 archi-
tecture, which supports explicit tile-to-tile communication
through the iLib library. Traffic from implicit communica-
tions such as the shared L2-cache and coherence traffic are

not considered. The proposed technique is very general and
should be applicable to other CMP architectures. With the
traffic prediction from NTPT, we can perform various opera-
tions to improve CMP performance and power consumption:

• End-to-end flow control by controlling the injection
rate.

• Setting appropriate power modes of the switches.

• Modeling thermal distribution of a chip taking both
cores and switches into consideration.

• Optimizing inter-core communications at runtime.

This paper is organized as follows. Section 2 discusses
related works. In Section 3, we give a formal definition of
our problem. In Section 4, we introduce the design of our
traffic prediction scheme and several techniques for reducing
the size of the tables. Section 5 presents evaluations of our
design in terms of prediction accuracy and effects of design
parameters. Finally, conclusions of the paper and sugges-
tions for future works are given.

2. RELATED WORKS
A general strategy for predicting the future is to cap-

ture the past behaviors. Most existing works rely on simple
counters for capturing past behaviors, due to the simplic-
ity and low area overhead of such counters. In [3], coun-
ters and tables are used to identify whether running tasks
are computation- or memory-bound. Tables have also been
used widely in branch prediction and cache prefetching [5].
The tables can capture both temporal and spatial behaviors
for accurate future predictions. Unfortunately, even though
prediction tables have been applied successfully and widely
to predict branches and cache accesses, there are very few
works on predicting traffic in NoC. In [6], information ex-
changed between adjacent switches is used to predict the
pressure of the traffic and make flow control decisions. The
prediction is from the switch perspective and does not take
account of the application behaviors. As far as we know,
NTPT is the first work to address end-to-end traffic predic-
tion for NoC from the perspective of applications.

3. PROBLEM FORMULATION
For simplicity of discussion, we assume an NoC with a 2D

mesh topology. The size of the mesh network isM×M . Note
that our solution is general and independent of the underly-
ing topology. We also assume that each core runs one task.
Thus, the terms task and core will be used interchangeably
in the following discussions. Again, this assumption can be
easily relaxed by duplicating the NTPT. The application
running on the CMP can be represented as a task graph,
denoted as T . The task graph consists of a set of tasks, each
runs on one core. Let commi denote the set of tasks which
task i may communicate to, i.e., commi = {j|i → j}. Let
pt(i, j) be the traffic predicted by NTPT to flow from task i
to j at the t-th time interval, where i, j ∈ T and j ∈ commi.
Note that this is end-to-end traffic. Let ct(i, j) be the ac-
tual traffic from task i to j at the t-th time interval. The
goal of traffic prediction is to make the difference between
pt(i, j) and ct(i, j) as small as possible, i.e., the prediction
is as accurate as possible.

4. SYSTEM DESIGN

4.1 The Design of NTPT
NTPT is a two-level table designed for predicting the traf-

fic of NoC in the next time interval based on the history.
The design is inspired by the branch prediction table. In
this subsection, we first introduce the notations used and
then describe the design of NTPT.

There are two predictors supported by the NTPT, local
predictor and global predictor. The local predictor makes
predictions based on the last activity saved in counteri,j ,
where i and j are the source and destination task, respec-
tively. The local predictor is usually accurate if the running
application has a stable and consistent behavior. On the
other hand, the global predictor makes predictions based
on the communication history pattern. It makes different
predictions for each tracked communication pattern. NTPT
has a selector to decide which predictor to use at runtime.

Let historyi,j be the record of the communication pat-
tern between tasks i and j in NTPT. Let tablei,j be the
global prediction table, in which each entry is indexed by
historyi,j and contains a prediction value. The prediction
value records the amount of data transmitted when this pat-
tern was encountered last time. If the same pattern appears
again, the recorded value is used as the prediction value. Let
∆ denote the sampling period. The capacity of each link is
W bits/s.

After introducing the notations, we are now ready to de-
scribe the design of NTPT by illustrating the mechanisms
for monitoring and predicting the traffic produced by a task.
Consider a task i and the task j with which i may communi-
cate, i.e., j ∈ commi. The prediction function can be defined
as follows:

pt(i, j) =

{
ct−1(i, j), s(i, j) = 0;
tablei,j(historyi,j), s(i, j) = 1.

Recall that pt(i, j) is the predicted traffic from task i to
task j at the t-th interval. The prediction either comes from
the local predictor or the global predictor, determined by a
selector function s. The selector function can be designed
according to the system requirements. In this paper, we use
a 2-bit saturating counter.

Each entry in the NTPT has a counter for recording the
total size of transmitted data in the current time interval, a
shift register for tracking the history of traffic pattern, and
a flag indicating whether there is an outgoing traffic in the
current time interval. The traffic pattern is updated with
the latest traffic behavior (i.e., the transmission flag) at the
end of each time interval. The traffic pattern is used to index
a global history table. The global history table stores the
prediction for each different traffic pattern.

When task i generates an outgoing traffic to task j, the
NTPT records the size of the transmitted data and the des-
tination, and sets the transmission flag indicating that there
is an outgoing traffic in the current time interval. At the end
of the current time interval, the NTPT shifts the transmis-
sion flag into the traffic pattern shift register and makes a
traffic prediction for the next time interval either by the local
predictor or the global predictor. The prediction for the size
of the data to be transmitted is a pure last-value prediction,
i.e., the size is the same as in the last time interval.

Besides, the resolution for the size of the transmitted data

can be set by the quantizer G bits/unit according to the
application. It follows that the most coarse-grained record
is to set G to W . In this way, ⌈ct(i, j)/(G ·∆)⌉ is either 0 or
1 for some task i and j at t-th time period, indicating the
link either transmits or not at all. When we are going to
do fine-grained prediction, we can set a smaller G for finer
adjustments.

4.2 Practical Implementation Details
NTPT can be implemented as a two-level hierarchical ta-

ble. The first-level table is indexed by the id of the des-
tination core. Each entry contains the number of packets
transmitted most recently and the recent traffic patterns.
The second-level table is indexed by the history of the traffic
patterns, and each entry contains the predicted transmission
rate.
Due to space limitation, the technical details for reducing

the table size and estimating the area overhead are omitted
here. Main techniques used are listed as follows and inter-
ested readers are referred to the technical report [2]. (1)
Reducing the size of the first-level table, (2) Sharing the
second-level table, (3) Quantizing the values in the second-
level table, (4) Quantizing the size of transmitted data, and
(5) Entry replacement in the second-level table.
Assume that the NoC has a topology of 5× 5 mesh. Each

network interface thus needs to maintain a table with 52

entries. After applying all the reduction strategies above
and using LRU replacement in the 2nd-level table, we can
show that the table can be reduced to 56 bytes.

5. EVALUATION
In this section, we evaluate the accuracy of our NTPT

traffic prediction method using different time interval set-
tings, and compare our method with local and global pre-
dictors.

5.1 Methodology
We use Tilera’s TILE64 as the evaluation platform [1]. For

each NTPT in the system, we use a dedicated tile to simu-
late its behavior, such as tracking outgoing traffic and up-
dating the communication pattern register. In other words,
if we are going to evaluate NTPT on a CMP with n tiles,
we will use n extra tiles in TILE64 for simulating the be-
havior of corresponding NTPTs. We define WORKER as
the set containing the tiles which are running the applica-
tion and UPDATER as the set containing the tiles which
are simulating the behavior of NTPT. The relation between
the tiles in WORKER and the tiles in UPDATER is de-
fined as follows: uti ∈ UPDATER is updating the NTPT of
wtj ∈ WORKER, if i = j.
Our evaluation uses a modified blocked LU decomposition

kernel from the SPLASH-2 suite [9] as the benchmark. The
blocked LU decomposition kernel from SPLASH-2 is a data-
parallel shared-memory program. For our evaluation, we
made two modifications to the benchmark. First, in the ini-
tialization stage, we make each tile in WORKER to allocate
and cache its own portion of the data memory space. Sec-
ond, when wti needs data which belongs to wtj , we use the
iLib tile-to-tile message passing API to transmit the data
from wtj to wti. Meanwhile, a notification containing the
information of this transmission will be sent to utj for NTPT
simulation.
The number of arrays in the LU decomposition kernel is

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1000 900 850 800 750 700 650 600 550 500 450 400 350 300 250 200 150 100 50

Update Time Interval (Million cycles)

Global Predictor Local Predictor

Figure 1: The ratio of using global predictor and
local predictor under different time intervals.

set as 50, and each of them is a 512 × 512 64-bit floating
point array generated randomly at initialization. Each array
is separated into 1024 16 × 16 subarrays and dispatched to
16 tiles for parallel processing.

5.2 The Impact of the NTPT Update Time In-
terval

Update time interval setting is a critical factor affecting
the prediction accuracy and the applicability of the predic-
tion results. In this experiment, we try to find a suitable
time interval for our benchmark program. A suitable time
interval should be able to capture the communication be-
havior embedded in the application logics and predict the
network traffic with acceptable accuracy. We have tested
the time interval settings ranging from 1,000,000,000 cycles
to 50,000,000 cycles, as shown in Figure 1.

While using larger time interval settings (over 800,000,000
cycles), the prediction error rate is relatively low, but the
global predictor is rarely selected. Although we can get a
high prediction accuracy by using large time interval set-
tings, the low global predictor usage means that NTPT does
not observe much variation in the communication behavior.
This indicates that it misses the dynamism of the NoC traf-
fic and thus the prediction is not applicable. Similar results
can be observed if applying relatively small time interval
settings (under 50,000,000 cycles).

For our benchmark, with the time interval settings rang-
ing from 100,000,000 cycles to 400,000,000 cycles, the global
predictor is frequently selected. This indicates that NTPT
observes a varying communication behavior, and the predic-
tion can tell us whether the NoC is busy or not. In summary,
the time interval settings ranging from 100,000,000 cycles to
400,000,000 cycles allow NTPT to capture the communica-
tion behavior inherited in our benchmark program.

5.3 Comparison between Local and Global Pre-
dictors

In this subsection, we evaluate the performance of our
NTPT-based predictor by comparing with a local predic-
tor and a global predictor. The prediction error rates of
the three different predictors with different update interval
settings are shown in Figure 2. The local predictor (dia-
mond dotted line) suffers from high error rates using update

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

100 200 300 400 500 600 700 800 900 1000

P
re

d
ic

ti
o

n
 E

rr
o

r
R

a
te

Update Time Interval (Million Cycles)

Local Predictor Global Predictor NTPT-based Predictor

Figure 2: Prediction error rate of the three types of
predictors.

time intervals ranging from 150,000,000 to 650,000,000 cy-
cles, because the communication traffic with these time in-
terval settings varies widely as monitored by NTPT. While
using larger time intervals, the local predictor has a good
prediction accuracy since the communication patterns are
almost the same, again as shown in each NTPT update.
On the other hand, the global predictor (square dotted

line) performs well in all the evaluated update time inter-
vals. The global predictor can work as a local predictor when
the two entries of 00000000 and 11111111 have been filled
in the 2nd-level table, which stand for the communication
patterns of no transmission and transmit at all times. This
results in high accuracy predictions in low-variance commu-
nication patterns. The global predictor, by its nature, is also
capable of predicting accurately in high-variance communi-
cation patterns.
However, the global predictor uses more memory space

than the local predictor. The accuracy of the global pre-
dictor is determined mainly by the number of patterns that
can be tracked in the 2nd-level table. Currently, we have
not limited the size of the 2nd-level table, and therefore all
the patterns can be tracked and used to make predictions.
But in a practical implementation, the 2nd-level table may
not be large enough to keep all the patterns throughout the
application execution. The accuracy will be affected greatly
by the replacement policy. When a longer global history is
needed, the number of total tracked patterns (the difference
between the global predictor and the NTPT-based predic-
tor) will increase as Table 1 shows.
To summarize, the NTPT-based predictor (triangle dot-

ted line) adaptively selects a local predictor in low-variance
traffic and a global predictor for high-variance traffic. More-
over, the experiments show that the NTPT uses fewer en-
tries than the global predictor and thus incurs a lower space
overhead.

6. CONCLUSIONS
In this paper, we propose a two-level table design called

Network Traffic Prediction Table (NTPT) for predicting end-
to-end traffic of the NoC. The design is introduced and the
area overhead is analyzed. For evaluation, we port the LU
decomposition in SPLASH-2 with NTPT simulation to the
TILE64 platform. The prediction accuracy of the proposed

Table 1: Total patterns tracked by pure global
predictor and NTPT-based predictor by running
a modified SPLASH-2 blocked LU decomposition
benchmark with 16 tiles and 600,000,000 update
time interval.

Global History Length Global Predictor NTPT
4 92 26
6 132 37
8 218 60
10 233 75
12 275 87
14 346 95
16 407 167

NTPT method is then evaluated based on different time in-
terval settings and by comparing with pure local and global
prediction. The results show that NTPT performs well. In
the future, we will apply NTPT to adjusting the link fre-
quencies for reducing the power consumption in NoC.

Acknowledgements
This work is funded by the Industrial Technology Research
Institute and National Science Council grant NSC 98-2220-
E-007-019.

7. REFERENCES
[1] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,

J. MacKay, M. Reif, L. Bao, J. Brown, M. Mattina, C.-C. Miao,
C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks,
D. Khan, F. Montenegro, J. Stickney, and J. Zook. Tile64 -
processor: A 64-core soc with mesh interconnect. In Solid-State
Circuits Conference, 2008. ISSCC 2008. Digest of Technical
Papers. IEEE International, pages 88–598, Feb. 2008.

[2] Y. S.-C. Huang, K. C.-K. Chou, and C.-T. King. Ntpt: On the
end-to-end traffic prediction in the on-chip networks. Technical
report, 2010.

[3] C. Isci, G. Contreras, and M. Martonosi. Live, runtime phase
monitoring and prediction on real systems with application to
dynamic power management. In MICRO 39: Proceedings of
the 39th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 359–370, Washington, DC, USA,
2006. IEEE Computer Society.

[4] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi. Orion 2.0: A
fast and accurate noc power and area model for early-stage
design space exploration. In Proc. DATE ’09. Design,
Automation. Test in Europe Conference. Exhibition, pages
423–428, Apr. 20–24, 2009.

[5] K. J. Nesbit and J. E. Smith. Data cache prefetching using a
global history buffer. In Proc. 10th International Symposium
on HPCA-10 High Performance Computer Architecture,
page 96, Feb. 14–18, 2004.

[6] U. Y. Ogras and R. Marculescu. Prediction-based flow control
for network-on-chip traffic. In Proc. 43rd ACM/IEEE Design
Automation Conference, pages 839–844, 2006.

[7] L. Shang, L.-S. Peh, and N. K. Jha. Dynamic voltage scaling
with links for power optimization of interconnection networks.
In Proc. Ninth International Symposium on
High-Performance Computer Architecture HPCA-9 2003,
pages 91–102, Feb. 8–12, 2003.

[8] L. Shang, L.-S. Peh, A. Kumar, and N. K. Jha.
Temperature-aware on-chip networks. 26(1):130–139, Jan. 2006.

[9] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The splash-2 programs: characterization and methodological
considerations. In ISCA ’95: Proceedings of the 22nd annual
international symposium on Computer architecture, pages
24–36, New York, NY, USA, 1995. ACM.

[10] T.-Y. Yeh and Y. N. Patt. Alternative implementations of
two-level adaptive branch prediction. In Proc. 19th Annual
International Symposium on Computer Architecture, pages
124–134, May 1992.

