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Abstract—The Support Vector Machines (SVMs) have been widely used for classification due to its ability to give low generalization

error. In many practical applications of classification, however, the wrong prediction of a certain class is much severer than that of the

other classes, making the original SVM unsatisfactory. In this paper, we propose the notion of Asymmetric Support Vector Machine

(ASVM), an asymmetric extension of the SVM, for these applications. Different from the existing SVM extensions such as thresholding

and parameter tuning, ASVM employs a new objective that models the imbalance between the costs of false predictions from different

classes in a novel way such that user tolerance on false-positive rate can be explicitly specified. Such a new objective formulation

allows us of obtaining a lower false-positive rate without much degradation of the prediction accuracy or increase in training time.

Furthermore, we show that the generalization ability is preserved with the new objective. We also study the effects of the parameters in

ASVM objective and address some implementation issues related to the Sequential Minimal Optimization (SMO) to cope with large-

scale data. An extensive simulation is conducted and shows that ASVM is able to yield either noticeable improvement in performance

or reduction in training time as compared to the previous arts.

Index Terms—Support Vector Machine, classification, low false-positive learning

Ç

1 INTRODUCTION

FALSE-POSITIVE is a critical concern in many real-world
classification problems in which the wrong prediction of a

certain class is much severer than the total prediction
accuracy. For instance, in spam mail filtering, users are
highly sensitive the misclassification of a good mail into the
spam because it may result in the loss of important messages
[1], [7], [17]. In computer-aided disease diagnosis such as the
early detection of cancer, wrongly predicting a malignant
tumor as benign may cause the loss of a life because the
success of treating the cancer depends on how early
the discovery of the disease. The detection in the very first
stage can lead to longer survival of the patient [13], [40]. In
facial image recognition [37] and network intrusion detection
[3], costly but wrong decision may follow if a false match or
alarm is fired. In these applications, users are particularly
sensitive to the misclassification on a certain class. Therefore,
when applied to these applications, the classifier must result
in very low false-positive (or negative) rate.

There have been many research works made upon
different classification algorithms to reduce the false-
positive rate [1], [8], [11], [16], [19], [21], [22], [24], [28],
[29], [34], [39]. The SVM is a statistically robust classification
algorithm which shows state-of-the-art performance [10],
[15], [16], [35]. However, there are relatively few studies
concerning on reducing the false-positive rate in utilizing
the SVM [16], [21], [32]. Common techniques in SVM for
low false-positive learning include parameter tuning [12],
[21] and thresholding [16], [32]. The parameter tuning
technique tackles the low false-positive classification pro-
blems by applying different misclassification costs among
classes in training the SVM. This technique either incurs
time-consuming exhaustive search for the appropriate
parameter combination [12] or requires the domain-specific
knowledge of the pattern contents (e.g., the relation
between different mail categories in spam filtering [21])
since the generated classifier may not generalize well to
testing data due to the heuristic nature in setting the cost
parameters. The thresholding technique applies to the
generated SVM classifier by establishing a larger than zero
threshold on the Receiver Opeating Characteristic (ROC)
curve of the testing data. The patterns must have the
prediction scores higher than the threshold to be classified
as positive. As the threshold moves high, there will be
fewer patterns to be predicted as positive. Hence, the false-
positive rate is lowered. However, the true-positive rate is
also lowered at the same time. This results in an unwanted
tradeoff between minimizing the false-positive rate and
maximizing true-positive rate.

The traditional SVM optimizes the margin between two
classes of data to achieve high classification performance
such as testing accuracy or the area under the ROC curve
(AUC). However, a classifier with high accuracy does not
necessarily result in correct predictions to the sensitive
class. For example, consider a data set which are highly
imbalanced in class distribution. The prediction accuracy
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will be dominated by the majority class. At an extreme,
misclassifying all instances in a minority class can still
result in high accuracy. Furthermore, for the classification
problem which is sensitive to a particular class of wrong
prediction, keeping the resultant false-positive rate under a
user-specified tolerance is usually in a higher priority than
obtaining high accuracy or AUC. For example, although a
spam mail filter can identify most of the spam mails, users
will be satisfied with it only when no (or very few) good
mail is wrongly classified to spam [39]. Another example is
that a hospital will tolerate only a certain number of misses
in disease screening, if its insurance company pays for only
a fixed number of compensation cases annually. Hence,
there is a basic need for a new SVM which seeks high
classification performance only when the false-positive rate
meets the user tolerance.

In this paper, we propose the Asymmetric Support
Vector Machine (ASVM), an asymmetric variant of the
support vector learning algorithm, which incorporates
the user-specified tolerance of false-positive rate into the
objective formulation. The ASVM is asymmetric in the sense
that the margin maximized in the algorithm is between
the negative class and the core [6], which is a high confidence
subset, of the positive class. Given a user-specified
tolerance, we are able to determine a core in proper size
which ensures a satisfactory false-positive rate to the user.
Basically, the smaller the core is (i.e., the higher the
confidence), the less chance the false-positive will occur. In
reducing the false-positive rate by maximizing the core-
margin (i.e., shrinking the core), the class-margin is
maximized at the same time to yield good classification
performance. We bridge the core-margin and the structural
risk minimization [35] framework which provides the
generalization to cover the unseen data. The false-positive
rate can be controlled by the ASVM parameters, and an
upper bound is derived for the generalized false-positive
rate given by the ASVM. Therefore, the ASVM avoids the
tradeoff between the false-positive and true-positive rates in
the thresholding technique, and does not require prior or
domain-specific knowledge as in the parameter tuning.

To the best of our knowledge, this is the first work which
exploits the asymmetry in the objective of the SVM to control
the false-positive rate. Our contributions are summarized as
follows: first, we propose the notion and the formulation of
the ASVM, the asymmetric support vector machine. The
core-margin is maximized in the objective function in
addition to the class-margin of the traditional SVM to realize
the asymmetry. The ASVM respects to the structural risk
minimization to ensure the generalization ability. Second,
the effects of the ASVM parameters are studied in detail, and
we observe their linkage to the empirical measure of the
portion of outliers. Thus, the ASVM is able to incorporate the
prior knowledge when the fraction of noises is known in
advance or there exist low-confidence patterns in the data
set. Third, we address the issues of implementing the ASVM,
and propose a Sequential Minimal Optimization (SMO) [20],
[26], [32] like bitraining technique to scale the ASVM to large
data sets. Finally, we conduct extensive simulations on both
the synthetic and real-world data sets [2], [27]. The
experimental results show that the ASVM can reach about
6.4 percent improvement over the thresholding technique in
AUC when a user-specified tolerance of the false-positive
rate is required to meet, and in the ROC convex hull, the

ASVM dominates in the low false-positive region. Compared
to the parameter tuning technique, the ASVM is able to
achieve a comparable performance while consuming an
order less training time.

The rest of this paper is organized as follows: in Section 2,
we give the preliminaries of this work by reviewing some
related works and briefly explaining the rationales of the
SVM. Section 3 introduces the ASVM and examines the
effects of each parameter in the ASVM formulation. Then
the generalization ability of the ASVM is analyzed in
Section 4. In Section 5, we conduct the experiments to
evaluate the performance of the ASVM, and discuss some
implementation and training issues to cope with large-scale
data sets. Section 6 concludes the paper.

2 PRELIMINARIES

In this section, we briefly review related studies, and give
preliminaries of SVMs. We specify some terminologies and
assumptions that will be used throughout the text.

2.1 Related Works

Recent studies for cost-sensitive learning and class-
imbalance learning include the techniques with utility
[9], [21], cascaded classifiers [38], [39], ensemble [24], [41],
boosting [11], [25], [37], compression [8], and the Bayesian
classifiers [1], [28], [29]. Androutsopoulos et al. [1], Sahami
et al. [28], and Schneider [29] adjusted the parameters of
the probability model of Bayesian approaches to associate
the positive predictions with high confidence. Studies in
[9] and [21] employed the utilities, sometimes called
stratifications, to change the prior of a decision tree or
costs of SVM slacks. The work of [11] induced a decision
tree that is able to give confidence-rated predictions by
following the AdaBoost algorithm. Bratko et al. [8] derived
two compression models for the positive and negative
classes, respectively, and assigned the label of a pattern to
the class having higher compression rate. These compres-
sion models are adaptive so the false-positive rate may be
controlled. Yih et al. [39] proposed a two-stage cascaded
classifier. Patterns reported as positive in the first stage are
further validated in the second to reduce the false-positive
rate. Lynam et al. [24] merges different classifiers (those
submitted to TREC 2005 Spam Evaluation Track [14]) and
combines their outputs using the log-odd average to
achieve low false-positive rate.

Zhou and Liu [41] studied on applying sampling and
thresholding as well as the ensemble of the two techniques in
cost-sensitive neural network learning. The sampling tech-
nique causes unbalance between classes by duplicating
instances of the high-cost class or decreasing the instances of
the low-cost class. The thresholding which moves the
decision boundary toward the low misclassifying cost side
is similar to the thresholding of traditional SVMs [16], [32].
Furthermore, the neural network algorithm converges to
locally optimal solutions (in back-propagation). The ASVM,
on the other hand, finds the global optimum. When the
Gaussian kernels are used, the resulted ASVM corresponds
to an Radial Basis Function (RBF) network with Gaussian
radial basis functions, and the size of the hidden layer, which
is controlled manually in a neural network, can be obtained
automatically during the ASVM training procedure.
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There are also several cost-sensitive methods designed for
the popular AdaBoost classification algorithm, mostly for
the face detection problems where there are only a few face
patterns but a large number of nonface patterns in an image.
Viola and Jones [37] proposed an asymmetric AdaBoost
algorithm in which the weight update in the iteration of
AdaBoost learning procedure is modified to asymmetry by
increasing the weights of face patterns and decreasing
the weights of nonface patterns. Masnadi-Shirazi and
Vasconcelos [25] also proposed an asymmetric AdaBoost.
It is based on a statistical framework by viewing the boosting
algorithm as a stage-wise fitting of additive logistic regres-
sion model, and then applying an asymmetric cost-sensitive
logistic regression in the boosting. The false-positive rate in
the asymmetric AdaBoost is lowered by sequentially
minimizing an exponential loss function. Instead, our ASVM
employs the hinge loss, which less penalizes instances with
slacks, and therefore is more robust to outliers.

Wu et al. [38] tackle the face detection problem by
utilizing a cascade of classifiers to stage-wise reject the
nonface patterns where the classifiers in the cascade are
learned by asymmetric AdaBoost. Rather than learning a
single classifier with low false-positive rate, it cascades
multiple base learners. Only those patterns pass all the
stages will be classified as faces, so the cascade produces a
lower false-positive rate. The concept of cascade in [38] is
orthogonal to our work, and the ASVM can be used as a
base learner in the cascade.

There is also a work considering the cost-sensitive cases
for semi-supervised SVM [23]. Its goal is also orthogonal to
our work since we focus on supervised learning with the
SVM. The assumption of the ASVM is different that there is
no massive unlabeled data available.

In the following, we briefly review the objective
formulations of the SVM for the preliminary of our study.

2.2 Support Vector Machines

Given a sample Zm ¼ ððx1; y1Þ; ðx2; y2Þ; . . . ; ðxm; ymÞÞ of m
training instances drawn i.i.d. from X � f�1g, where xi 2 X
denotes a pattern and yi 2 f�1g is a class label. Our goal for
classification is to find a real value function f such that
8ðx; yÞ 2 X � f�1g, fðxÞ � 0, if y ¼ 1; fðxÞ < 0 otherwise.
The value fðxÞ is called the decision value.

The SVM classifier. The SVM [10], [15], [35] is a
statistically robust learning method with state-of-the-art
performance on classification. The SVM trains a classifier by
finding an optimal separating hyperplane which maximizes
the margin between two classes of data. The optimal
separating hyperplane w � �ðxÞ þ b ¼ 0 is found by solving
the quadratic programming optimization problem in a
high-dimensional Reproducing Kernel Hilbert Space
(RKHS), H, with a mapping function �

arg min
w;b;�

1

2
kwk2 þ C

Xm
i¼1

�i

subject to yiðhw;�ðxiÞi þ bÞ � 1� �i;�i � 0;i ¼ 1; . . . ;m:

ð1Þ

Minimizing 1
2 kwk

2 in the objective function means
maximizing the margin between two classes of data. Each
slack variable �i denotes the extent of xi falling into the
erroneous region, and C > 0 is the cost parameter which

controls the tradeoff between maximizing the margin and
minimizing the slacks. Studies [4], [33], [35] show that the
large margin can actually lead to better generalization
performance in prediction. The decision function is
fðxÞ ¼ hw;�ðxÞi þ b, and the testing instance x is classified
by sgnðfðxÞÞ to determine which side of the optimal
separating hyperplane it falls into.

The SVM’s optimization problem is usually solved in
dual form to apply the kernel trick

arg min
�

1

2
�TQ��

Xm
i¼1

�i ð2Þ

subject to
Xm
i¼1

�iyi ¼ 0;0 � �i � C;i ¼ 1; . . . ;m; ð3Þ

where Q is called kernel matrix with Qi;j ¼ yiyjkðxi;xjÞ, i ¼
1; . . . ;m, j ¼ 1; . . . ;m. The function kðxi;xjÞ ¼ h�ðxiÞ;
�ðxjÞi is called kernel function, which implicitly maps xi
and xj into a high-dimensional feature space and computes
their dot product there. By applying the kernel trick, the
SVM implicitly maps data into the kernel induced high-
dimensional space to find an optimal separating hyperplane
which prevents the high-dimensional mapping of function
�. Commonly used kernel functions include Gaussian
Radial Basis Function kernel kðx;yÞ ¼ expð�qkx� yk2Þ
with q > 0, polynomial kernel kðx;yÞ ¼ ðqx � yþ rÞd with
q > 0, and the neural network kernel kðx;yÞ ¼ tanhðqx � y þ
rÞ, where q, r, and d are kernel parameters. The original dot
product is called linear kernel kðx;yÞ ¼ x � y. The corre-
sponding decision function of the dual form SVM is

fðxÞ ¼
Xm
i¼1

�iyikðxi;xÞ þ b; ð4Þ

where �i, i ¼ 1; . . . ;m are called supports, which denote the
weights of each instance to compose the optimal separating
hyperplane in the feature space.

One-class SVM. There is another type of SVM [6], [30]
that aims at distinguishing the regular patterns from outliers.
Given a sample Xm ¼ ðx1; . . . ;xmÞ of m unlabeled patterns
drawn i.i.d. from X with distribution D, the one-class SVM
searches for the smallest ball that encloses the support of D.
When data are mapped to an RKHS, finding the smallest ball
is equivalent to searching a hyperplane that approaches the
data set as close as possible from the origin [30]. Let
f w;�ðxÞh i � � : �ðxÞ 2 Hg, � 2 IR, be the hyperplane, the
objective of one-class SVM is formulated as follows:

arg min
w;�;��

1

2
kwk2 � �þ C

Xm
i¼1

�i;

subject to w;�ðxiÞh i � �� �i and �i � 0;

ð5Þ

for all i ¼ 1; . . . ;m. The above objective puts all instances xi
at the upper side of the hyperplane fhw;�ðxÞi � � � 0 :
�ðxÞ 2 Hg and let the boundary hw;�ðxÞi � � ¼ 0 approach
the elements of Xm by maximizing its margin from the
origin (i.e., �=kwk). Patterns xi falling outside the region
fhw;�ðxÞi � � � 0 : �ðxÞ 2 Hg are called outliers and have
�i > 0. The parameter C controls the tradeoff between
maximizing the margin (i.e., �=kwk) and minimizing the
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training error (i.e.,
Pm

i¼1 �i). Solving (5), the function
sgnðhw;�ðx0Þi � �Þ can be used to indicate whether a testing
pattern x0 belongs to the support or not.

To reduce the false-positive rate of the SVM classifier,
current solutions either set a threshold [16], [32] or
differentiate the cost C of the slack variables [12], [21]. In
thresholding [16], [32], a testing instance x0 may be
predicted as positive only if w;�ðx0Þh i þ b � t, where t >
0 is a threshold whose value is determined from the ROC
curve. Clearly, the larger the value of t, the less chance a
false-positive occurs in a prediction. However, fewer true-
positives can be identified. The latter approach [12], [21]
associates different costs Ci to different slacks �i in (1). This
approach is time consuming as it requires either human
interaction [21] or extra searches [12] to obtain proper
values of Ci.

3 ASVM

In this section, we introduce the Asymmetric Support
Vector Machine and its rationale. We also show how ASVM
can incorporate the user tolerance to achieve low false-
positive learning.1

3.1 Notation

X the pattern domain

x a pattern

y a class label, y 2 f�1g
Zm a sample of m training instances

ððx1; y1Þ; ðx2; y2Þ; . . . ; ðxm; ymÞÞ
Zm the domain of samples of size m

H Reproducing Kernel Hilbert Space

� the feature map

k a positive definite kernel

F a class of functions

f a real value or f�1g function
A a class of events

A an event

D the distribution of X � f�1g
jAj the cardinality of a set (event) A

PrfAg the probability of a set (event) A

fa the false alarm rate Dfðx;�1Þ : fðxÞ > �� �
2g;

er the misclassification rate Dfðx; yÞ : fðxÞ 6¼ yg
sþ (s�) positive (negative) in-bound support vectors
oþ (o�) positive (negative) outliers

� the core-margin

� the class-margin

� the slack variable

�, �, � Lagrange multipliers

�, 	 ASVM parameters

q the parameter of Gaussian RBF kernel

Premp the empirical probability
t the user tolerance

3.2 An Asymmetric Formulation

Recall that in traditional SVM classifier, the margin are
maximized between the positive and negative classes

described by the training (noisy) instances. To lower the
false-positive rate, we aim at searching for a better
described positive class that is able to catch a higher
confidence area among the positive training patterns. Note
changing the value of C in (1) to identify more outliers from
the positive patterns may not lead to a better description
since by definition the outliers do not reflect the low
confidence points in the underlying data distribution. One
naive solution is to adopt two one-class SVMs, with
different values of C in (5), to estimate proper borders of
the two classes and let the decision boundary sit in the
middle of the two balls. However, the balls are independent
of each other. This approach does not take into account the
interaction (e.g., overlap, margin) between the two classes,
and the accuracy of predictions is expected to be low from
the statistical learning theory [35] point of view.

We formulate the objective of ASVM as follows:

arg min
w;�;�;�

1

2
kwk2 � �� �

	
� þ 1

	m

Xm
i¼1

�i;

subject to yiðhw;�ðxiÞi � �Þ þ
1

2
ðyi � 1Þ� � ��i;

�i � 0; and � � 0;

ð6Þ

for i ¼ 1; . . . ;m, where � and 	 are constants. The concept of
(6) is illustrated in Fig. 1. Note we use the shorthand x for
�ðxÞ. Consider two parallel hyperplanes fhw;�ðxÞi � � :
�ðxÞ 2 Hg and fhw;�ðxÞi � �þ � : �ðxÞ 2 Hg. The above
objective puts the positive patterns at the upper side of
the first plane fhw;�ðxÞi � � : �ðxÞ 2 Hg; and the negative
ones at the lower side of the second fhw;�ðxÞi � �� � :
�ðxÞ 2 Hg. Instances falling outside their corresponding
regions are called slacks and have positive penalties �i > 0.
We set fðxÞ ¼ hw;�ðxÞi � �þ �

2 , and predict the label of a
testing instance x0 by sgnðfðx0ÞÞ.

ASVM maximizes two margins, the core-margin
(i.e., �=kwk) and the traditional class-margin (i.e., �=kwk)
as in SVM. The rationale behind is that, by enlarging the core-
margin, we are able to enclose the core [6] (i.e., high
confidence description) of the positive class in a set
f�ðxÞ : hw;�ðxÞi � �g. At the same time, the class-margin
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Fig. 1. A logic view of ASVM in RKHS. Two margins, the core-margin
(�=kwk) and class-margin (�=kwk), are maximized simultaneously to
allow classifying the negative class and the core of the positive class.

1. Due to the space limitation, we focus ourselves on the two-class
classification problem. The ASVM objective proposed in this paper can be
easily extended to the multiclass problem.



is maximized between the negative class and this core to
achieve high accuracy in prediction as well as its general-
ization. The false-positive rate is expected to be lowered
when � increases. Note ASVM is orthogonal to most previous
studies described in Section 2, and can be readily integrated
with the techniques like thresholding [16], [32], utility/cost
tuning [9], [21], cascading [39], and ensemble [24].

We may transform (6) by using the Lagrangian into the
following dual objective:

arg max
�

1

2

Xm
i;j¼1

�i�jyiyjkðxi;xjÞ

subject to
Xm
i¼1

�i � 2
�

	
þ 1;

Xm
i¼1

�iyi ¼ 1;

and 0 � �i �
1

	m
:

ð7Þ

The details can be found in Appendix. We will discuss how
to solve this problem efficiently later.

Learning under the user tolerance. Consider two toy
data sets shown in Figs. 2a and 2b. Fig. 2c depicts
the margin (with decision values �1) and the decision line
f�ðxÞ : w;�ðxÞh i þ b ¼ 0g returned by the SVM classifier
given the cost parameters C ¼ 1 and the Gaussian RBF
kernel parameter q ¼ 0:5. The parameters are found using
the cross-validation [18]. We mark the slacks with squares.
Fig. 2d depicts an enclosing ball of the positive class
returned by the one-class SVM with parameters C ¼ 0:25,
q ¼ 1. The outputs of ASVM for these two data sets are
shown in Figs. 2e and 2f with parameters � ¼ 0:15, 	 � 0,
q ¼ 0:5, and � ¼ 0:15, 	 ¼ 0:0225, q ¼ 1:5, respectively.
Comparing Figs. 2c and 2e, we can see that ASVM behaves
similarly to the SVM classifier when 	 is close to 0.

By increasing �, we are able to obtain a larger margin, as
depicted in Fig. 2g (� ¼ 0:3, 	 � 0, q ¼ 0:5). The effect of � is
analogous to that of C in SVM. On the other hand, as
illustrated in Fig. 2h, we are able to capture the dense region
of the positive classes by increasing 	 (� ¼ 0:15, 	 ¼ 0:05,

q ¼ 0:5) since the core-margin grows as 	 increases. The
dense region, unlike those captured by one-class SVM, are
antagonistic to the negative class since by (6) it aims at
excluding as many negative instances as possible. We may
see this clearly by comparing Figs. 2d and 2f. Note, we omit
the decision line in Fig. 2f for simplicity. The captured
dense region may reasonably represent the high confidence
area of the positive class due to its high density, purity
(in class label), and long distance to the negative class.

ASVM is useful in the situations where a user given
tolerance t to the false-positive rate must be met. Fig. 2i
shows two typical ROC curves resulted by the SVM and
ASVM classifiers in Figs. 2c and 2h, respectively. Both SVM
and ASVM achieve 95 percent accuracy in prediction. The
AUC given by ASVM is 0.95, which is slightly lower than
that (0.96) achieved by SVM. However, benefiting from a
better description of the positive class, ASVM can sig-
nificantly reduce the chance that a false-positive occurs
from an instance with high decision value. Denote t-AUC
the area under the ROC curve in y-axis and t in x-axis.
Suppose t ¼ 0:1, Fig. 2j depicts the performance of SVM and
ASVM when the false-positive rate must be less then 0.1. In
such a case, the 0.1-AUC given by ASVM is 0:86t, which is
about 56 percent higher than that (0:55t) given by SVM.

3.3 The Effects of Parameters

Although we have seen by Fig. 2 the relations between
the parameters, � and 	 , and the margins, the values of
these parameters are still unintuitive to users. In this
section, we show that the effects of � and 	 can actually be
quantified in terms of the portion of outliers.

Let mþ (resp. m�) be the number of the positive (resp.
negative) instances in Zm. Denote sþi (resp. s�i ) the positive
(resp. negative) in-bound support vectors, i.e., instances
ðxi; 1Þ (resp. ðxi;�1Þ) having 0 < �i <

1
	m ; and oþi (resp. o�i )

the positive (resp. negative) outliers, i.e., instances ðxi; 1Þ
(resp. ðxi;�1Þ) having �i ¼ 1

	m , as depicted in Fig. 1. Let
Prempðsþi Þ ¼ 1

m jfs
þ
i gj (resp. Prempðs�i Þ) and Prempðoþi Þ ¼

1
m jfo

þ
i gj (resp. Prempðo�i Þ) be the portions of the positive
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Fig. 2. Toy examples. (a) and (b) Distributions of the first and second data sets. (c) Decision boundary given by the SVM classifier. (d) Enclosing ball
of the positive class returned by the one-class SVM. (e) Decision boundary given by the ASVM. (f) Enclosing balls returned by ASVM. (g) Increasing
� of ASVM results in a larger class-margin. (h) Obtaining a high confidence region of the positive class by increasing 	 . (i) The ROCs achieved by the
SVM output in (c) and the ASVM output in (h). (j) The areas under respective ROCs that meet a user tolerance 0.1 to the false-positive rate.



(resp. negative) in-bound support vectors and the outliers
among Zm, respectively.

Theorem 1. Assume � > 0 and � > 0, then Prempðoþi Þ �
Prempðo�i Þ is upper bounded by 	 þ Prempðs�i Þ.

Proof. At KKT complementarity conditions, � > 0 implies
� ¼ 0 (see Appendix). Therefore, the term

Pm
i¼1 �i �

2 �
	 þ 1 in (7) becomes an equation. We have

Xmþ
i¼1

�i þ
Xm�
i¼1

�i ¼ 2
�

	
þ 1;

Xmþ
i¼1

�i �
Xm�
i¼1

�i ¼ 1:

8>>>><>>>>:
Summing the above two equations, we have

Pmþ

i¼1 �i ¼
�
	 þ 1, 0 � �i � 1

	m . There exist at most ð�	 þ 1Þð 1
	mÞ positive

instances that have �i ¼ 1
	m . Since the outliers have

�i ¼ 1
	m , we obtain

Prempðoþi Þ �
ð�þ 	Þm

m
¼ �þ 	: ð8Þ

Now subtract the above two equations. We havePm�

i¼1 �i ¼
�
	 , 0 � �i � 1

	m . Since each �i can contribute

at most 1
	m , there exist at least ð�	Þð 1

	mÞ ¼ �m negative

instances that have �i � 0. This implies that Prempðs�i Þ þ
Prempðo�i Þ �

�m
m ¼ �, and therefore

Prempðo�i Þ � �� Prempðs�i Þ: ð9Þ

Combining (8) and (9), we obtain

Prempðoþi Þ � Prempðo�i Þ � ð�þ 	Þ � ð�� Prempðs�i ÞÞ

¼ 	 þ Prempðs�i Þ:
tu

Theorem 2. Assume � > 0 and � > 0, then Prempðoþi Þ �
Prempðo�i Þ is lower bounded by 	 � Prempðsþi Þ.

Proof. Consider
Pmþ

i¼1 �i ¼
�
	 þ 1, 0 � �i � 1


m . Since each �i
can contribute at most 1

	m , there exist at least ð�	 þ 1Þð 1
	mÞ ¼

ð�þ 	Þm positive instances that have �i � 0. Hence, we

obtain Prempðsþi Þ þ Prempðoþi Þ �
ð�þ	Þm

m ¼ �þ 	 ; that is,

Prempðoþi Þ � �þ 	 � Prempðsþi Þ: ð10Þ

Now consider
Pm�

i¼1 �i ¼
�
	 , 0 � �i � 1

	m . There exist at
most ð�	Þð 1

	mÞ ¼ �m negative instances that have �i ¼ 1
	m .

We have

Prempðo�i Þ �
�m

m
¼ �: ð11Þ

Combining (10) and (11), we obtain

Prempðoþi Þ � Prempðo�i Þ � ð�þ 	 � Prempðsþi ÞÞ � �

¼ 	 � Prempðsþi Þ:
ut

Theorem 3. Assume � > 0 and � > 0. Suppose the instances in

Zm are generated i.i.d. from a distribution D that is

continuous with respect to x. Suppose, moreover, the kernel

is analytic and nonconstant. The difference Prempðoþi Þ �
Prempðo�i Þ converges almost surely to 	 , i.e.,

Prð lim
m!1

ðPrempðoþi Þ � Prempðo�i ÞÞ ¼ 	Þ ¼ 1:

Proof. With Theorems 1 and 2, this can be proofed intuitively

by claiming that, when m!1, both Prempðsþi Þ ! 0 and

Prempðs�i Þ ! 0 [31]. tu

We can see that the parameter 	 controls the difference
between the outliers from the positive and negative classes.
As a byproduct, we can see from (8) and (10) that

ð�þ 	Þ � Prempðsþi Þ � Prempðoþi Þ � ð�þ 	Þ; ð12Þ

and from (9) and (11) that

�� Prempðs�i Þ � Prempðo�i Þ � �: ð13Þ

The parameter � controls the basic portion of the outliers
from each class. Note the effect of � in ASVM is similar to
that of the parameter 
 in 
-SVM classifier [31]. Using the
above conclusions, ASVM may incorporate with the prior
knowledge (in portion of the outliers) to obtain a more
sophisticated and high confidence area.

4 GENERALIZATION PERFORMANCE

As shown in Section 3, we can lower the false-positive rate
of ASVM by increasing 	 (and therefore the core-margin).
However, the false-positive rate is estimated empirically
based on testing data and may not generalize well to the
other data sets. In this section, we give a Probably
Approximately Correct (PAC) analysis of the ASVM
generalization performance2 and show that given an unseen
data drawn from the same distribution with Zm, the false-
positive rate can indeed be lowered by increasing 	 .

Consider two samples Zm ¼ ððx1; y1Þ; ðx2; y2Þ; . . . ; ðxm;
ymÞÞ and eZm ¼ ððex1; ey1Þ; ðex2; ey2Þ; . . . ; ðexm; eymÞÞ, where the

respective instances ðxi; yiÞ and ðexi; eyiÞ are drawn i.i.d. from

X � f�1gwith distributionD. Define the true (i.e., expected)

false-positive rate

faðfÞ ¼ D ðx;�1Þ : fðxÞ > �� �
2

n o
;

where x 2X and 0 < � < �. We first generalize a standard

symmetrization technique [31], [36].

Lemma 4. Consider two classes of events A and A0 measurable

with respect to D. Given Zm and eZm, define PrempA ðZmÞ ¼
1
m jZm \Aj. Let ’ ¼ supA2A;A02A0 jPrðAÞ � PrempA0 ðZmÞj and

 ¼ supA2A;A02A0 jPrempA ðeZmÞ � PrempA0 ðZmÞj. For �2m � 2,

Dm Zm : ’ > �f g � 2D2m Zm
eZm :  >

�

2

n o
; ð14Þ

Zm
eZm ¼ ððx1; y1Þ; . . . ; ðxm; ymÞ; ðex1; ey1Þ; . . . ; ðexm; eymÞÞ.

Proof. The proof can be found in Appendix. tu
Theorem 5. Suppose � > 0. With probability at least 1� �, every

f 2 F has
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2. Note ASVM is a large margin classifier, so previous analyses [4], [33],
[35] can be easily adapted to obtain the generalization performance of
ASVM in classification. Here, we concentrate on the false-positive analysis.



faðfÞ < Prempðo�i Þ

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

m

1024

�2
ln

17em�2

512

� �
log2ð578mÞ þ ln

4

�

� �s
:

ð15Þ

Proof. We bound the target probability DmfZm : 9f 2 F ;
faðfÞ> Prempðo�i Þ þ �g.

Step 1: Define a threshold function

ðxÞ ¼
�� �

2 ; if x � �� �
2 ;

�� �; if x � �� �;
x; otherwise:

8<:
Denote ðFÞ ¼ f 	 f : f 2 Fg. It is clear that faðfÞ �
Dfðx; yÞ : y ¼ �1 and ðfðxÞÞ � �� �=2g. Also, fðxiÞ >
�� � if and only if ðfðxiÞÞ 6¼ �� �. We may rewrite the
target probability as

Dm Zm : 9f 2 F ;Dfðx;�1Þ : ðfðxÞÞ � �� �=2gf

>
1

m
j ðxi;�1Þ : ðfðxiÞÞ 6¼ �� �f gj þ �

�
:

By Lemma 4, the probability above is no more than

2D2m Zm
eZm : 9f 2 F ; 1

m
j ðexi;�1Þ : ðfðexiÞÞ � �� �=2f gj

�
>

1

m
j ðxi;�1Þ : ðfðxiÞÞ 6¼ �� �f gj þ �

�
;

ð16Þ

as long as �2m � 2.

Step 2: Consider a �
4 -cover of ðFÞ, G (with respect

to the pseudometric lXm
eXm

1 ). For every  	 f 2 ðFÞ,
there exists g 2 G such that jgðxjÞ � ðfðxjÞÞj < �=4,

8ðxj;�1Þ2 Zm
eZm. Note

ðfðexiÞÞ � �� �=2
implies gðexiÞ � �� 3�=4, i.e.,

ðexi;�1Þ : ðfðexiÞÞ � �� �=2f g

 ðexi;�1Þ : gðexiÞ � �� 3�=4f g:

On the other hand, gðxiÞ � �� 3�=4 implies ðfðxiÞÞ 6¼
�� �, i.e.,

ðxi;�1Þ : gðxiÞ � �� 3�=4f g

 ðxi;�1Þ : ðfðxiÞÞ 6¼ �� �f g:

Hence, (16) is no more than

2D2m Zm
eZm : 9g 2 G; 1

m
ðexi;�1Þ : gðexiÞ � �� 3�=4f gj j

�
>

1

m
ðxi;�1Þ : gðxiÞ � �� 3�=4f gj j þ �

�
:

ð17Þ

Step 3: Next, consider a class of permutations � over
f1; 2; . . . ; 2mg in which each permutation � randomly
swaps the corresponding elements of the first and second
half, i.e., f�ðiÞ; �ðmþ iÞg ¼ fi;mþ ig, 81 � i � m. Since
a sample Zm

eZm is drawn from a product probability

measure D2m, (17) will not be affected if we apply a

permutation � to the element index of Zm
eZm. Suppose �

is selected from � by following an uniform distribution

U , we may rewrite (17) as

2D2m

�
Zm
eZm : 9g 2 G;

U

�
� :

1

m

Xm
i¼1

ð��ðmþiÞ � ��ðiÞÞ > �

��
;

ð18Þ

where �j 2 f0; 1g, �j ¼ 1 if and only if gðxjÞ � �� 3�
4 ,

8ðxj;�1Þ 2 Zm
eZm. By the union bound, (18) is no more

than

2 sup
Zm
eZm

jGj sup
g2G

U � :
1

m

Xm
i¼1

ð��ðmþiÞ � ��ðiÞÞ > �

( )

¼ 2 sup
Zm
eZm

jGj sup
g2G

U � :
1

m

Xm
i¼1

ð�mþi � �iÞui > �

( )

� 2jGj sup
a;b

U � :
1

m

Xm
i¼1

ðai � biÞui > �

( )
;

where ui are chosen independently and uniformly from

f�1g. By Hoeffding’s inequality, the above probability is

no more than

2jGj expð��2m=2Þ
� 2Nð�=4; ðFÞ; 2mÞ expð��2m=2Þ:

Setting this to � and solving � gives

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

m
ln

2Nð�=4; ðFÞ; 2mÞ
�

r
:

Step 4: The study [5] shows that log2Nð�=4; ðFÞ; 2mÞ <
1þ d log2ð34em=dÞ log2ð578mÞ provided

m � 1þ d lnð34em=dÞ;

where d ¼ fatF ð�=32Þ. In addition, study [4] shows that

d � 1024=�2 if the RBF kernel is used. Applying � and

these terms to the target probability, we obtain the

proof. tu
Back to Fig. 1, consider a fixed � and we increase 	 .

Since Prempðo�i Þ does not grow with 	 by (13), the first term

at the right hand side of (15) remains the same (or close to

its original value). On the other hand, Prempðoþi Þ increases

proportionally to 	 by (12). The core-margin extends

directly. Since Prempðo�i Þ is fixed, this effectively broadens

the class-margin toward the positive side, and the value of

� is increased meanwhile. Notice that the square root at the

right-hand side of (15) decreases when � grows. Therefore,

we may obtain a lowered true false positive rate by setting

a higher 	 .

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of ASVM. We

also study the scalability of ASVM and discuss some

implementation issues to cope with large-scale data.
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5.1 Metrics and Settings

We implement ASVM based on LIBSVM [12]. To evaluate
the performance of ASVM, we consider several public real-
world data sets obtained from the UCI machine learning
repository [2] and IJCNN 2001 competition [27]. We control
a 1:9 ratio between the positive and negative instances by
either resampling (for two-class data sets) or merging the
class labels (for multiclass data sets) [37]. Users under such
a ratio are sensitive to the false-positives since any
increment in the false-positive rate may seriously affect
the positive predictions. In each data set the training and
testing instances are split according to a 5:1 ratio. We use
tenfold cross validation in each training process.

This paper focuses on low false-positive learning. In
particular, we are interested in the performance of a
classifier provided that a user tolerance t, 0 � t � 1, to the
false-positive rate must be met. We focus on the t-ROC space,
i.e., an ROC space with the axis of false-positive rate
ranging from 0 to t. We use the following metrics in our
performance evaluation:

. Slopes in t-ROC space. This metrics is useful to
investigate the tradeoff between different classifiers
when the isoperformance line varies.

. t-AUC. This metrics demonstrates the discriminability
of a classifier in t-ROC space. We let each classifier
maximize this metrics in training time.

We compare ASVM with the ThresHolding (TH) [16], [32]
and the Parameter Tuning (PT) [12], [21] techniques, which
are both available in LIBSVM by default. Note that since we
focus on a general purpose classifier, no prior knowledge,
such as that used in [21], is assumed. In thresholding, the
standard SVM classifier is used and has two parameters, C
and q, as we have seen in Section 2.2, which need to be
determined during the training time. We adopt a 2D grid
search [18] for the optimal combination of these two
parameters that maximizes t-AUC. In parameter tuning,
we differentiate the parameter C of a standard SVM
between the positive (Cþ) and negative (C�) classes, and
employ a 3D grid search for the optimal combination of Cþ,
C�, and q maximizing t-AUC. In ASVM, there are three
parameters, �, 	 , and q, as we have seen in Section 2.2 and
Section 3. Rather than adopting a 3D grid search directly, we
first fix a very small 	 (to simulate the conventional SVM
classifier) and apply a 2D grid search for the optimal
combination of � and q that maximizes t-AUC. After proper
� and q are obtained, we perform a linear search (i.e.,
1D grid search) for 	 maximizing the t-AUC further. In
addition to the SVM variants, we also compare ASVM with
the Asymmetric Boosting (AB) [38], as it has a large margin
interpretation which is similar to that employed in
the objective of SVMs. In the Asymmetric Boosting, we
use decision stumps as the weak learners and allow the
algorithm to run for 50 iterations. There are two parameters,
C1 and C2, which control the cost of false negatives and
positives respectively. We set C2 ¼ 1 and adopt a 1D grid
search for the optimal value of C1 maximizing t-AUC.

5.2 SMO Implementation

For better scalability, we reduce the ASVM dual to the
Sequential Minimal Optimization [26] problem. In order to
match the SMO input, we need to rewrite the constraintPm

i¼1 �i � 2 �
	 þ 1 in (7) as

Pm
i¼1 �i ¼ 2 �

	 þ 1. Doing this can

effectively relax the constraint � � 0 in the ASVM primal
(see (6)) and therefore a special care is needed when
selecting � in the training time to prevent a negative class-
margin �. One easy way is to check whether � < 0 during
each iteration of a grid search and skip the corresponding
candidates. Another way is to train an auxiliary hyperplane
with � always equal to 0 in (6) first during each iteration of
the grid search. We are able to estimate the basic portion of

zero by calculating the portions of the negative instances
falling across the auxiliary hyperplane. Following (12) and
(13), we can see that � � 0 as long as

� � basic portion of zero:

This approach, called bitraining, is particularly useful to
those cases, such as online training, where the grid-search
technique is infeasible. In this paper, we adopt the former
approach for the sake of simplicity. Fig. 3 shows the
scalability of ASVM. Currently, we are able to handle about
20,000 instances within a minute.

5.3 Comparison with Thresholding

In this section, we compare the testing results of ASVM
with those of ThresHolding. TH is based on traditional SVM
classifier. As mentioned in Section 3, ASVM is also
compatible to this technique and therefore we consider
setting up different thresholds for ASVM’s positive predic-
tions as well. The resultant performance of both the
classifiers can be easily arranged and shown in an ROC
space, where each point on an ROC curve presents a
tradeoff between the true- and false-positive rates given a
certain threshold (not necessarily larger than 0 in this case).

We use data sets including Pima Indian Diabetes, Statlog
German, Wisconsin Breast Cancer, Ionosphere, Statlog
Australian, Covertype, and IJCNN in our experiments. We
consider t ¼ 1 and 0.1 for each data set in the training
phase. For larger data sets such as Covertype and IJCNN,
we consider t ¼ 0:05 additionally since under such a
configuration the training instances are still sufficient to
apply the learned model to the testing data. Note that since
the ratio between the positive and negative instances is 1:9,
we differentiate the parameter C in TH between the positive
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Fig. 3. The scalability of ASVM based on the SMO implementation.



(Cþ) and negative (C�) classes and set Cþ:C� ¼ 9:1 to
compensate for the skew data distribution.3

Table 1 shows the maximal t-AUCs achieved by TH and
ASVM, respectively. As we can see, for Diabetes the 1-
AUCs given by TH and ASVM are very close to each
other. By comparing the 1-AUCs of the rest data sets, we
can see that, generally, ASVM gives similar performance as
SVM in classification. When focusing on 0.1-AUCs,
however, we observe that ASVM is able to give 33 percent
improvement over TH. The other data sets based on which
ASVM can make noticeable improvement include Iono-
sphere (10.9 percent for 0.1-AUC) and IJCNN (5.1 percent
for 0.1-AUC, 3.8 percent for 0.05-AUC). We believe this is
mainly because that ASVM successfully obtain a high
confidence area of the positive class in these data sets.
Overall, ASVM gives about 6.4 percent improvement in t-
AUC when t � 0:1.

In the Ionosphere data set, the targets of the radar data
are free electrons in the ionosphere. The label indicates if
the signal shows evidence of some type of structure in the
ionosphere. The ASVM seems to be able to find the dense
region of the specific structure. The Pima Indian diabetes
data set are medical records of female Pima Indian heritage,
which are used to learn classifiers to predict if a patient is
subject to diabetes. Although this data set is highly
overlapped, some of the positive cases have apparent
characteristics hence the ASVM can find an apparent core
region. In Statlog German and Australian, people are
labeled in terms of good or bad credit risks according to
their credit data. Most attributes are indicator variables. It
seems that these indicator variables prevent instances from
forming a core region tightly, because the weight of each
attribute is missing during data normalization. The breast
cancer data set, which contains clinical cases of breast
cancer detection, is gathered for predicting whether the
organization is benign or malignant. Since the TH is already
able to separate it very well, the ability of the ASVM in
finding the core seems to do little help.

Notice that in the Statlog Australian data set, the
advantage of ASVM does not help a better performance.
We believe this is because that the classes are separable in

RKHS. Under such a case, SVM is good enough to make low

false-positive predictions.
Next, we study the detailed performance of ASVM and

TH within the 0.1- and 0.05-ROC space. Our observation

shows that ASVM is usually the best classifier at the very

first segment of the false-positive rate (starting from 0). This

is true even for the Covertype data set, despite the fact that

ASVM does not achieve the highest 0.1-AUC in Table 1.

Fig. 4a illustrates the ROC curves returned by ASVM and

TH using t ¼ 0:1 in training time. As we can see, ASVM is

the best classifier when the false-positive rate ranges from 0

to 0.019 and gives the sharpest range of slope, ½15:129;1�,
along the ROC Convex Hull. The true-positive rate is 0.774

at the point of false-positive rate 0.019. Fig. 4b illustrates the

ROC curves when t ¼ 0:05 is used. Again, ASVM is the best

classifier when the false-positive rate is above 0 and under

0.002. It also gives the sharpest slopes ranging from 32.780

to 1 along the ROC Convex Hull. The true-positive rate is

0.387 at the point of false-positive rate 0.002. ASVM is useful

in the situations that the cost of the false-positives is high

(or, the slope of the isoperformance line is sharp).

5.4 Comparison with Parameter Tuning

In this section, we compare the testing results of ASVM with

those of Parameter Tuning. Although both PT and ASVM
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TABLE 1
Performance Comparison between the ThresHolding and ASVM in Terms of t-AUC, Where t ¼ 1, 0.1, and 0.05

Are Given in Training Time

Fig. 4. The ROC curves of TH and ASVM given t ¼ 0:1 and 0.05 in
training time.3. This is suggested in LIBSVM [12].



have three parameters (Cþ, C�, q and �, 	 , q, respectively),
they are trained in different way. In PT, the effects of Cþ and
C� are correlated. Changing any value of Cþ, C�, and q may
result in movement of a decision boundary as well as its
margin, as shown in Fig. 5a. Under such a case, we need to
search the entire 3D space for the best combination of Cþ,
C�, and q. In ASVM, on the other hand, we can see from
Fig. 5b that given � and q, increasing the value of 	
effectively shifts the decision boundary toward the positive
class. The class margin is enlarged, but its placement, which
is determined by � and q, is not affected by 	 . Based on this
observation, we adopt a heuristic training method aiming at
reducing the training times of a 3D grid search. As
mentioned before, we first apply a 2D grid search for 	
and q to determine a proper placement of the decision
boundary when 	 � 0, and then increase 	 to obtain a high
confidence area of the positive class.

The maximal t-AUCs achieved by PT and ASVM are
summarized in Table 2. As we can see, the difference
between the results of ASVM and PT is not significant,
ranging between �3%.

To see the detailed performance of ASVM and PT within
the 0.1- and 0.05-ROC space, let’s consider again the
Covertype data set. Fig. 6a illustrates the ROC curves
returned by ASVM and PT using t ¼ 0:1 in training time. As
we can see, ASVM is the best classifier when the false-
positive rate ranges from 0 to 0.002 and gives the sharpest
range of slope, ½26:476;1�, along the ROC Convex Hull. The
true-positive rate is 0.355 at the point of false-positive rate
0.002. Fig. 6b illustrates the ROC curves when t ¼ 0:05 is
used. In this case, ASVM remains the best in the range
½0; 0:002� of the false-positive rate. It also gives the sharpest
range of slope ½26:476;1� along the ROC Convex Hull. The

true-positive rate is 0.387 at the point of false-positive rate
0.002. Generally, ASVM is able to give comparable
performance against PT in terms of either t-AUC, t � 0:1,
or slopes.

Next, we compare the number of training times required
in the grid searches adopted by ASVM and PT, respectively.
The results are depicted in Fig. 7 whose x-axis denotes the
granularity, i.e., the number that a search range in each
dimension is divided into. As we can see, ASVM requires
an order less training times than PT. This is because we
perform only a 2D search (for � and q) with one extra linear
search (for 	) rather than a 3D search as PT does. From the
above discussions, ASVM is able to give comparable
performance as compared with PT while significantly
reducing the total training times.

5.5 Comparison with Asymmetric Boosting

Table 3 shows the maximal t-AUCs achieved by the
Asymmetric Boosting and ASVM, respectively. As we can
see, ASVM outperforms AB in most data sets across different
values of t. In average, ASVM is able to give 1.5, 7.0, and
21.9 percent improvement when t ¼ 1, 0.1, and 0.05,
respectively. We believe this is because that ASVM
minimizes the hinge loss function as in traditional SVMs,
which penalizes instances with positive slacks less than the
exponential loss function used by AB does. Therefore,
ASVM is more robust to the noises and outliers. We also
notice that AB achieves better performance given the
Covertype data set when t ¼ 0:1 and 0.5. In such a case,
AB outperforms all SVM-based techniques, including TH
and PT. This may be due to the fact that the margin of AB can
increase during the iterations in the training process even
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Fig. 5. Decision planes in RKHS. (a) In PT, the movement of a decision
plane is unpredictable when the values of Cþ and C� are changed. (b) In
ASVM, changing the value of 	 effectively shifts the decision boundary
toward the positive class. Fig. 6. The ROC curves of PT and ASVM given t ¼ 0:1 and 0.05 in

training time.

TABLE 2
Performance Comparison between the Parameter Tuning and ASVM in Terms of t-AUC, Where t ¼ 1, 0.1, and 0.05

Are Given in Training Time



after training error becomes zero. However, this advantage

is not prominent universally, since in practice the data sets

are usually noisy, and the margin may not grow fast enough

to be satisfactory within a fixed number of iterations.

5.6 Asymptotic Property of 	

Another advantage of ASVM is that it is able to give more
insight into the data set. In Section 3, we showed that
there is an asymptotic relationship on the difference of the
portion of the outliers between two classes. In order to give
a more comprehensive view, we test the asymptotic
property of 	 in a synthetic data set with 90 positive labeled
and 10 negative labeled instances. Fig. 8 shows the
experimental results and compares the difference derived
theoretically with that obtained in the simulation under
different values of 	 . Note the dotted line along the diagonal
depicts the values of 	 .

As we can see, the actual portion of outliers lies within the
theoretical upper and lower bounds. Actually, these three
lines will converge to a single when the number of training
data increases. From above, the relation between the
difference of the portion of outliers and 	 is justified.

Recall in Section 4, we showed that the true false-positive
rate can be lowered by increasing the parameter 	 .
Although there is no way to measure the true false-positive
rate directly, the relationship between 	 and the true false-
positive rate holds as long as the relationship between 	 and
Prempðoþi Þ, and the relationship between 	 and Prempðo�i Þ
follow (12) and (13), respectively. Note, these two equations
can be combined as

	 � Premp
�
sþi
�
� Premp

�
oþi
�
� Premp

�
o�i
�
� 	 þ Premp

�
s�i
�
;

which is verified by Fig. 8. Therefore, the relationship
between 	 and the true false-positive rate is also justified.

5.7 Imbalanced Data Sets

In this section, we evaluate the performance of ASVM over
imbalanced data set. We consider the cases where the
number of positive (resp. negative) instances is much more
than the number of instances in the other class. This usually
happens in applications such as transaction approval
screening, credit risk analysis, and spam email detection.
We vary the ratio between the positive and negative
instances from 0.05 to 20. The data sets are retrieved by
resampling the Statlog German, which labels people in
terms of good or bad credit risks according to their credit
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Fig. 7. Number of iterations required to complete a grid search.

Fig. 8. The asymptotic property of 	 .

TABLE 3
Performance Comparison between the Asymmetric Boosting and ASVM in Terms of t-AUC, Where t ¼ 1, 0.1, and 0.05

Are Given in Training Time



data. We compare the ASVM with TH and PT, and train
each of them using the 0.1-AUC metric plus fivefold cross
validation. The results are averaged from 10 resampled data
sets and shown in Fig. 9.

Generally, the higher the imbalance, the worse the
results, as fewer training instances in one class leads to
higher generalization error. It is interesting to see that TH
outperforms PT in most cases. We believe this is because
that TH has fewer parameters than PT, and therefore lower
model complexity. Although giving bias, TH has lower
variance and is less affected by the lack of training instances
(in either class). The ASVM offers similar advantages over
PT since it is trained using a 2D grid search rather than 3D.
However, ASVM is outperformed by TH when there are
fewer positive instances (Fig. 9a). On the other hand, it gives
better results provided more positive instances (Fig. 9c).
This implies that ASVM requires sufficient positive in-
stances in order to find a good core. Also, it is less sensitive
to the lack of negative instances.

6 CONCLUSIONS

In this paper, we propose the ASVM, an asymmetric variant
of the support vector machine which takes into account
the user tolerance of false-positive rate by maximizing
the margin between the negative class and the core of the
positive class. We show that the low false-positive rate
achieved by the ASVM over the training data is general-
izable, and quantitate the effects of � and 	 in terms of the
portion of outliers. Thus, we are able to raise the confidence

in predicting the positives and obtain a lower false-positive

rate. The experimental results showed that ASVM achieves

6.4 percent improvement in AUC and dominates in the low

false-positive region of the ROC Convex Hull as compared

to the thresholding, and can result in a significant reduction

in training time as compared to the parameter tuning.

APPENDIX A

A.1 Derivation of the ASVM Dual

To solve (6), we introduce a Lagrangian

L ¼ 1

2
kwk2 � �þ 1

	m

Xm
i¼1

�i �
�

	
�

�
Xm
i¼1

�i yiðhw;�ðxiÞi � �Þ þ
1

2
�ðyi � 1Þ þ �i

� �
�
Xm
i¼1

�i�i � ��;

ð19Þ

where �i, �i, and � are Lagrange multipliers larger than or

equal to 0. The Lagrangian L must be maximized with

respect to �i, �i, and �, and minimized with respect to w,

�, �, and �i. At the Karush-Khun-Tucker (KKT) condition,

we have

@LP
@w
¼ w�

Xm
i¼1

�iyi�ðxiÞ ¼ 0

) w ¼
Xm
i¼1

�iyi�ðxiÞ;
ð20Þ

@LP
@�
¼ �1þ

Xm
i¼1

�iyi ¼ 0)
Xm
i¼1

�iyi ¼ 1; ð21Þ

@LP
@�
¼ ��

	
� 1

2

Xm
i¼1

�iðyi � 1Þ � � ¼ 0

)
Xm
i¼1

�i � 2
�

	
þ 1;

ð22Þ

@LP
@�i
¼ 1

	m
� �i � �i ¼ 0) 0 � �i �

1

	m
: ð23Þ

Replacing the corresponding terms in (19) by those in (20)-

(23) and substituting the kernel function kðxi;xjÞ for the dot

product �ðxiÞ;�ðxjÞ
	 


, we obtain the dual objective of

ASVM.
Note we may also rewrite fðxÞ ¼

Pm
i¼1 �iyikðxi;xÞ �

�þ �
2 . The values of � and � can be recovered using the KKT

complementarity conditions. At optimum, we have

�i
�
yiðhw;�ðxiÞi � �Þ þ

1

2
�ðyi � 1Þ þ �i

�
¼ 0;

�i�i ¼ 0; and �� ¼ 0;
ð24Þ

81 � i � m. For each positive in-bound support vector sþi ,

the second term at the left hand side of (24) must be zero.

We have � ¼
Pm

j¼1 �jyjkðxj; sþi Þ. Furthermore, for each s�i ,

the equation � ¼ ��
Pm

j¼1 �jyjkðxj; s�i Þ holds.
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Fig. 9. The t-AUC achieved by TH, PT, and ASVM given imbalanced
data sets. (a) TH versus ASVM when there are more negative instances.
(b) PT versus ASVM when there are more negative instances. (c) TH
versus ASVM when there are more positive instances. (d) PT versus
ASVM when there are more positive instances.



A.2 Proof of Lemma 4

By definition, we have

D2m Zm
eZm : ’ >

�

2

n o
¼
Z
Z2m

�  � �
2

� �
dD2mðZm

eZmÞ;

where �ðxÞ ¼ 1 if x � 0; �ðxÞ ¼ 0 otherwise. Since Zm
eZm 2

Zm � Zm, by Fubini’s theorem the above equation can be

reformulatedZ
Zm

Z
Zm
�  � �

2

� �
dDmðeZmÞ

� �
dDmðZmÞ

�
Z
fZm:’>�g

Z
Zm
�  � �

2

� �
dDmðeZmÞ

� �
dDmðZmÞ:

ð25Þ

Note that for each fixed Zm 2 fZm : ’ > �g, there exist two

events A0 2 A and A00 2 A
0, such that

PrðA0Þ � PrempA0
0
ðZmÞ

  > �:

To satisfy the condition

PrempA0
ðeZmÞ � PrempA0

0
ðZmÞ

  > �

2
;

it is sufficient to require that jPrempA0
ðeZmÞ � PrðA0Þj < �

2 . We

may therefore express the inner integral of (25) asZ
Zm
�  � �

2

� �
dDmðeZmÞ

�
Z
Zm
�
PrempA0

ðeZmÞ � PrempA0
0
ðZmÞ

� �
2

� �
dDmðeZmÞ

�
Z
Zm
�
�

2
�
PrempA0

ðeZmÞ � PrðA0Þ
� �
dDmðeZmÞ

¼ 1�Dm eZm :
PrempA0

ðeZmÞ � PrðA0Þ
 � �

2

n o
:

Regard DmfeZm : jeZm \A0jg as a sequence of m indepen-

dent f0; 1g experiments, each of which yields the outcome 1

with probability PrðA0Þ. The term DmffeZm : PrempA0
ðeZmÞg

has a binomial distribution of mean PrðA0Þ and variance
ð1�PrðA0ÞÞPrðA0Þ

m . By Chebyshev’s inequality, we have

Dm eZm : jPrempA0
ðeZmÞ � PrðA0Þj �

�

2

n o
� 4ð1� PrðA0ÞÞPrðA0Þ

�2m
� 1

�2m
:

This implies that, for �2m � 2,Z
Zm
�  � �

2

� �
dDmðeZmÞ �

1

2
:

Applying this to (25), we obtainZ
Zm

Z
Zm
�  � �

2

� �
dDmðeZmÞ

� �
dDmðZmÞ

�
Z
fZm:’>�g

1

2
dDmðZmÞ

¼ 1

2
Dm Zm : ’ > �f g:

The proof follows.

REFERENCES

[1] I. Androutsopoulos, J. Koutsias, K. Chandrinos, and C. Spyr-
opoulos, “An Experimental Comparison of Naive Bayesian and
Keyword-Based Anti-Spam Filtering with Personal E-Mail Mes-
sages,” Proc. 23rd Ann. Int’l ACM SIGIR Conf. Research and
Development in Information Retrieval (SIGIR), 2000.

[2] A. Asuncion and D. Newman, UCI Machine Learning Repository,
http://www.ics.uci.edu/ mlearn/MLRepository.html, 2007.

[3] D. Barbara, N. Wu, and S. Jajodia, “Detecting Novel Network
Intrusions Using Bayes Estimators,” Proc. First SIAM Conf. Data
Mining (SDM), 2001.

[4] P. Bartlett and J. Shawe-Taylor, “Generalization Performance of
Support Vector Machines and Other Pattern Classifiers,” Advances
in Kernel Methods: Support Vector Learning, MIT Press, 1998.

[5] P. Bartlett, “The Sample Complexity of Pattern Classification with
Neuralnetworks: The Size of the Weights is More Important than
the Size of Thenetwork,” IEEE Trans. Information Theory, vol. 44,
no. 2, pp. 525-536, Mar. 1998.

[6] A. Ben-Hur, D. Horn, H. Siegelmann, and V. Vapnik, “Support
Vector Clustering,” J. Machine Learning Research, vol. 2, pp. 125-
137, 2001.

[7] P. Boykin and V. Roychowdhury, “Leveraging Social Networks to
Fight Spam,” Computer, vol. 38, pp. 61-68, 2005.

[8] A. Bratko, G. Cormack, B. Filipic, T. Lynam, and B. Zupan, “Spam
Filtering using Statistical Data Compression Models,” J. Machine
Learning Research, vol. 7, pp. 2673-2698, 2006.

[9] L. Breiman, Classification and Regression Trees. Chapman & Hall,
1998.

[10] C. Burges, “A Tutorial on Support Vector Machines for Pattern
Recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2,
pp. 121-167, 1998.

[11] X. Carreras and L. Marquez, “Boosting Trees for Anti-Spam Email
Filtering,” Proc. Fourth Int’l Conf. Recent Advances in Natural
Language Processing, 2001.

[12] C.-C. Chang and C.-J. Lin, “LIBSVM: A Library for Support Vector
Machines,” software, http://www.csie.ntu.edu.tw/~cjlin/libsvm,
2001.

[13] H. Cheng, X. Cai, X. Chen, L. Hu, and X. Lou, “Computer-Aided
Detection and Classification of Microcalcifications in Mammo-
grams: A Survey,” Pattern Recognition, vol. 36, no. 12, pp. 2967-
2991, 2003.

[14] G. Cormack and T. Lynam, “Overview of the Trec 2005 Spam
Evaluation Track,” Proc. 14th Text REtrieval Conf. (TREC ’05), 2005.

[15] C. Cortes and V. Vapnik, “Support Vector Networks,” Machine
Learning, vol. 20, pp. 273-297, 1995.

[16] H. Drucker, D. Wu, and V. Vapnik, “Support Vector Machines for
Spam Categorization,” IEEE Trans. Neural Networks, vol. 10, no. 5,
pp. 1048-1054, Sept. 1999.

[17] J. Goodman, G. Cormack, and D. Heckerman, “Spam and the
Ongoing Battle for the Inbox,” Comm. ACM, vol. 50, no. 2, pp. 24-
33, Feb. 2007.

[18] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A Practical Guide to
Support Vector Classification,” technical report, http://
www.csie.ntu.edu.tw/~cjlin/libsvm, 2003.

[19] S. Inalou and S. Kasaei, “Adaboost-Based Face Detection in Color
Images with Low False Alarm,” Proc. Second Int’l Conf. Computer
Modeling and Simulation, 2010.

[20] J. Kivinen, A. Smola, and R. Williamson, “Online Learning with
Kernels,” Advances in Neural Information Processing Systems, vol. 14,
pp. 785-793, MIT Press, 2002.

[21] A. Kolcz and J. Alspector, “SVM-Based Filtering of E-Mail Spam
with Content-Specific Misclassification Costs,” Proc. Workshop Text
Mining—IEEE Int’l Conf. Data (TextDM), 2001.

[22] H.-Y. Lam and D.-Y. Yeung, “A Learning Approach to Spam
Detection Based on Social Networks,” Proc. Fourth Conf. Email and
Anti-Spam (CEAS), 2007.

[23] Y.-F. Li, J.T. Kwok, and Z.-H. Zhou, “Cost-Sensitive Semi-
Supervised Support Vector Machine,” Proc. 24th AAAI Conf.
Artificial Intelligence (AAAI), 2010.

[24] T. Lynam, G. Cormack, and D. Cheriton, “On-Line Spam Filter
Fusion,” Proc. 29th Ann. Int’l ACM SIGIR Conf. Research and
Development in Information Retrieval (SIGIR), pp. 123-130. 2006,

[25] H. Masnadi-Shirazi and N. Vasconcelos, “Asymmetric Boosting,”
Proc. 24th Int’l Conf. Machine Learning (ICML), 2007.

[26] J. Platt, “Sequenital Minimal Optimization: A Fast Algorithm for
Training Support Vector Machines,” Advances in Kernel Methods:
Support Vector Learning, MIT Press, 1998.

WU ET AL.: ON GENERALIZABLE LOW FALSE-POSITIVE LEARNING USING ASYMMETRIC SUPPORT VECTOR MACHINES 1095



[27] D. Prokhorov, IJCNN 2001 Neural Network Competition, Ford
Research Laboratory, 2001.

[28] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz, “A
Bayesian Approach to Filtering Junk E-Mail,” Technical Report
WS-98-05, AAAI, 1998.

[29] K. Schneider, “A Comparison of Event Models for Naive Bayes
Anti-Spam E-Mail Filtering,” Proc. 11th Conf. the European Chapter
of the Assoc. for Computational Linguistics, 2003.

[30] B. Scholkopf, J. Platt, J. Shawe-Taylor, A. Smola, and R.C.
Williamson, “Estimating the Support of a High-Dimensional
Distribution,” Neural Computation, vol. 13, pp. 1443-1471, 2001.

[31] B. Scholkopf and A. Smola, Learning with Kernels:: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, 2002.

[32] D. Sculley and G. Wachman, “Relaxed Online Support Vector
Machines for Spam Filtering,” Proc. 30th Ann. Int’l ACM SIGIR
Conf. Research and Development in Information Retrieval (SIGIR),
2007.

[33] J. Shawe-Taylor, P. Bartlett, R. Williamson, and M. Anthony,
“Structural Risk Minimization Over Data-Dependent Hierar-
chies,” IEEE Trans. Information Theory, vol. 44, no. 5, pp. 1926-
1940, Sept. 1998.

[34] D. Song and Y. Xu, “A Low False Negative Filter for Detecting
Rare Bird Species from Short Video Segments Using a Probable
Observation Data Set-Based EKF Method,” IEEE Trans. Image
Processing, vol. 19, no. 9, pp. 2321-2331, Sept. 2010.

[35] V. Vapnik, Statistical Learning Theory. Wiley, 1998.
[36] V. Vapnik and A. Chervonenkis, “On the Uniform Convergence of

Relative Frequencies of Events to Their Probabilities,” Theory of
Probability and Its Applications, vol. 16, no. 2, pp. 264-280, 1971.

[37] P. Viola and M. Jones, “Fast and Robust Classification Using
Asymmetric Adaboost and a Detector Cascade,” Proc. Neural
Information Processing Systems Conf. (NIPS), 2002.

[38] J. Wu, M.D. Mullin, and J.M. Rehg, “Linear Asymmetric Classifier
for Cascade Detectors,” Proc. 22nd Int’l Conf. Machine Learning
(ICML), 2005.

[39] W. Yih, J. Goodman, and G. Hulten, “Learning at Low False
Positive Rates,” Proc. Third Conf. Email and Anti-Spam (CEAS),
2006.

[40] B. Zheng, W. Qian, and L. Clarke, “Digital Mammography: Mixed
Feature Neural Network with Spectralentropy Decision for
Detection of Microcalcifications,” IEEE Trans. Medical Imaging,
vol. 15, no. 5, pp. 589-597, Oct. 1996.

[41] Z.-H. Zhou and X.-Y. Liu, “Training Cost-Sensitive Neural
Networks with Methods Addressing the Class Imbalance Pro-
blem,” IEEE Trans. Knowledge and Data Eng., vol. 18, no. 1, pp. 63-
77, Jan. 2006.

Shan-Hung Wu received the PhD degree in
electrical engineering from the National Taiwan
University, Taiwan, in 2009. He is an assistant
professor in the Department of Computer
Science, National Tsing Hua University (NTHU),
Hsinchu, Taiwan. Before joining NTHU in 2010,
he was a senior research scientist at Telcordia
Technologies from 2004 to 2010. His research
interests include database systems, data
mining, and mobile data management.

Keng-Pei Lin received the BS degree in
computer science and information engineering
from National Chiao Tung University, Hsinchu,
Taiwan, in 2005, and the PhD degree in
electrical engineering from National Taiwan
University, Taipei, Taiwan, in 2011. He is
currently an assistant professor in the Depart-
ment of Information Management, National Sun
Yat-sen University, Kaohsiung, Taiwan. His
research interests include data mining, business

intelligence, and machine learning.

Hao-Heng Chien received the BS degree from
the Department of Computer Science, National
Tsing Hua University (NTHU), Hsinchu, Taiwan,
where he is currently a graduate student. His
research interests include data mining and
social network analysis.

Chung-Min Chen received the BS degree in
computer science and information engineering
from the National Taiwan University, and
the PhD degree in computer science from the
University of Maryland, College Park. He is a
chief scientist at Telcordia Technologies. His
research interests include database systems,
mobile networks, and their applications.

Ming-Syan Chen received the BS degree in
electrical engineering from National Taiwan
University, Taipei, Taiwan, and the MS and
PhD degrees in computer, information and
control engineering from The University of
Michigan, Ann Arbor, Michigan, in 1985 and
1988, respectively. He is now a distinguished
research fellow and the director of the Research
Center of Information Technology Innovation
(CITI) at the Academia Sinica, Taiwan, and is

also a distinguished professor jointly appointed by the EE Department,
CSIE Department, and Graduate Institute of Communication Engineer-
ing (GICE) at National Taiwan University. He was a research staff
member at IBM Thomas J. Watson Research Center, Yorktown Heights,
New York, the director of GICE, and also the president/CEO of the
Institute for Information Industry (III), which is one of the largest
organizations for information technology in Taiwan. His research
interests include databases, data mining, cloud computing, and multi-
media networking, and he has published more than 300 papers in his
research areas. In addition to serving as program chairs/vice-chairs and
keynote/tutorial speakers in many international conferences, he was an
associate editor of IEEE Transactions on Knowledge and Data
Engineering, VLDB Journal, Knowledge and Information Systems, and
also Journal of Information Science and Engineering, is currently the
editor-in-chief of the International Journal of Electrical Engineering
(IJEE), and is a distinguished visitor of IEEE Computer Society for Asia-
Pacific from 1998 to 2000, and also from 2005 to 2007. He is now also
serving as the CEO of Networked Communication Program, which is a
national program coordinating several primary activities in information
and communication technologies in Taiwan. He is a recipient of the
Academic Award of the Ministry of Education, the National Science
Council (NSC) Distinguished Research Award, Pan Wen Yuan
Distinguished Research Award, Teco Award, Honorary Medal of
Information, and K.-T. Li Research Breakthrough Award for his research
work, and also the Outstanding Innovation Award from IBM Corporate
for his contribution to a major database product. He was also elected as
a chair professor by National Chung Hsing University. He is a fellow of
the IEEE and ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1096 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 5, MAY 2013



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


