

CS4101 嵌入式系統概論

Timers and Clocks

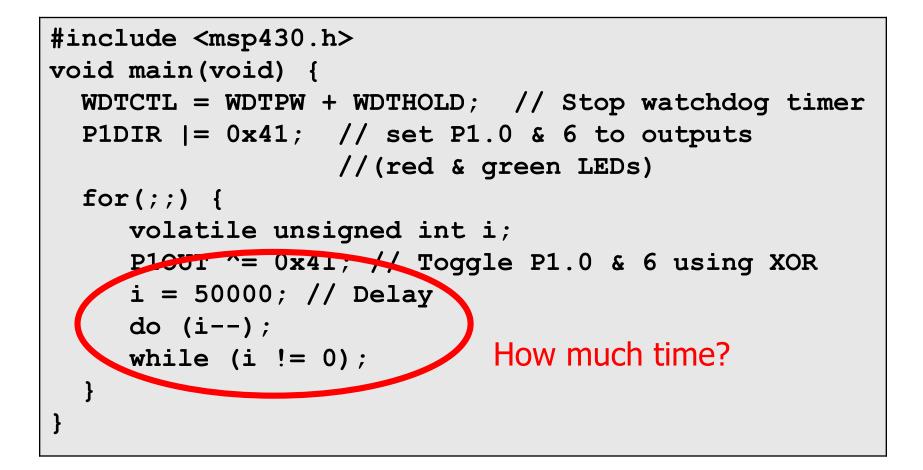
Prof. Chung-Ta King Department of Computer Science National Tsing Hua University, Taiwan

Materials from *MSP430 Microcontroller Basics*, John H. Davies, Newnes, 2008

Recall the Container Thermometer

- Container thermometer: monitor the temperature of the interior of a container
 - Monitor the temperature every 5 minutes
 - Flash LED alarm at 1 Hz
 - If the temperature rises above a threshold, flash the LED alarm at 3 Hz and notify backend server
 - If the temperature drops below a threshold, return the LED alarm to normal and notify the server

Need to know exact time!

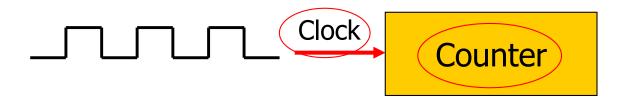

Many embedded systems are used to control things based on time or that have time constraints

- Traffic light controller
- Power meter
- Pacemaker (心跳節律器)
- Subway collision avoidance system
- Airbag

How to track real (wall clock) time?

Recall First MSP430 Program

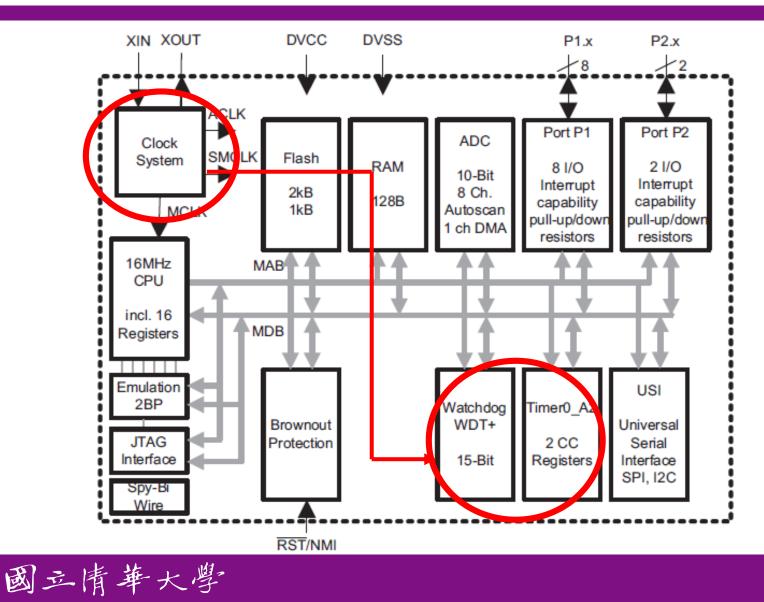
Problems Regarding Time


- Using software delay loops
 - Waste of processor because it is not available for other operations
 - Difficult to translate into actual time
 - Given a time for the delay, difficult to translate into number of iterations
 - The delays are unpredictable, e.g., compiler optimization, interrupts

We need an independent reference of time!

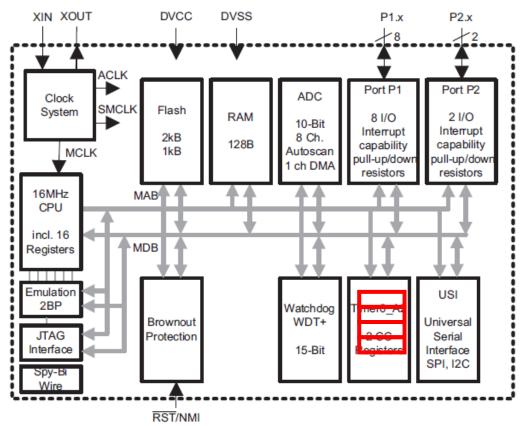
Reference of Time

 The simplest hardware to provide a reference of time is a counter that counts every fixed unit of time → timer



- The actual time can be obtained by multiplying the counter with the clock interval time
 - \rightarrow The accuracy and stability of the clock is critical

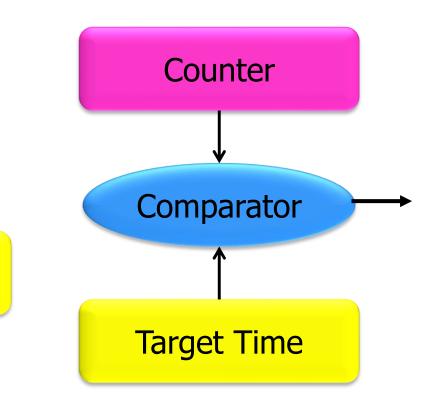
Where to put the timers?


Make Timer an IO Device!

National Tsing Hua University

Timers Being IO Devices

 Have internal registers with addresses in the memory space for the CPU to access

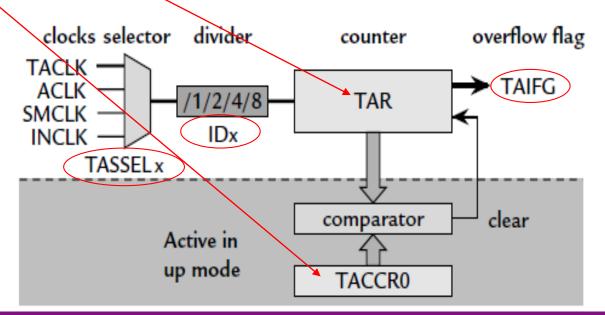


Typical Registers in a Timer

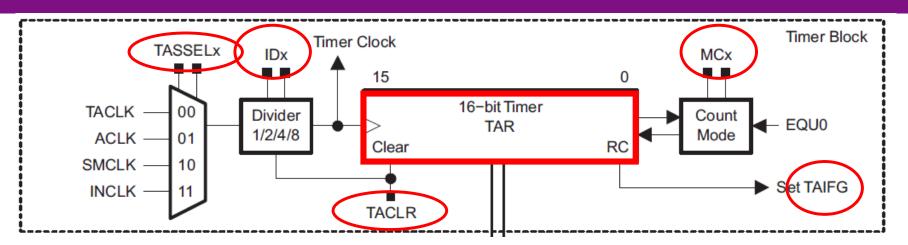
- The counter itself
- Target for counting
- Control settings
- Others: clock source selection, flags

Control

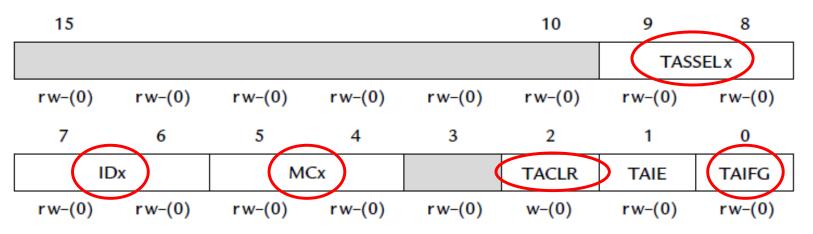
- Basic concepts of timers
- MSP430 timers
- An example of using MSP430 Timer_A
- Clocks in MSP430


Contain several timers, including:

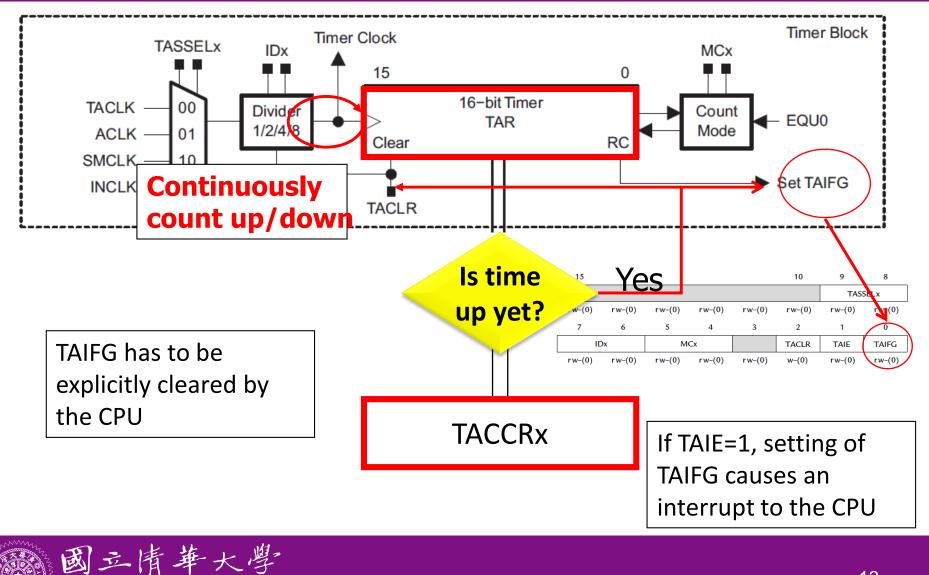
- Timer_A
 - A 16-bit counter, TAR, with three capture/compare registers.
- Watchdog timer
 - Count up and reset MSP430 when it reaches its limit
 - The code must keep clearing the counter before the limit is reached to prevent a reset
 - Protect system against failure of software, such as unintended, infinite loops


Registers in Timer_A

- TAR (0170h): the counter itself
- TACCRO (0172h): target for counting
- <u>TACTL</u> (0160h): control settings
- Others: clock source selection, flags



Inside Timer_A



• Timer_A Control Register: TACTL

Typical Operations of Timer_A

National Tsing Hua University

Timer_A Control Register (TACTL)

- TASSELx: Timer_A clock source select
- IDx: input divider
- MCx: mode control
- TACLR: Timer_A clear
- TAIE: Timer_A interrupt enable
- TAIFG: Timer_A interrupt flag

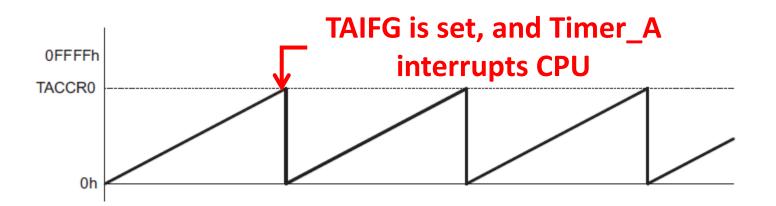
15					10	9	8
						TAS	SELx
rw-(0)							
7	6	5	4	3	2	1	0
ID	IDx		Cx		TACLR	TAIE	TAIFG
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	w-(0)	rw-(0)	rw-(0)

TACTL, Timer_A Control Register

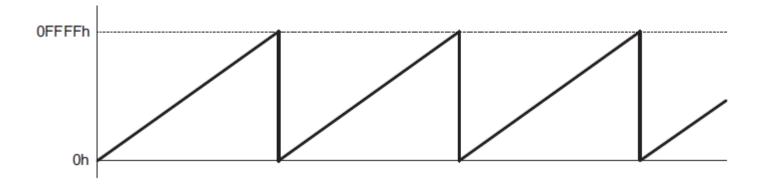
	15	14		13	12	11	10	9	8
				Unu	sed			TAS	SELx
	rw-(0)	rw-(0)		rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
	7	6		5	4	3	2	1	0
	ID)x		MC	Cx .	Unused	TACLR	TAIE	TAIFG
	rw-(0)	rw-(0)		rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
	Unused	Bits 15-10	Unused	t					
	TASSELX	Bits 9-8	Timer_	A clock source	select				
			00	TACLK					
			01	ACLK					
			10	SMCLK					
			11		K is device-speci fic data sheet)	fic and is often as	signed to the inver	ted TBCLK) (see	the
	IDx	Bits 7-6	Input d	ivider. These b	its select the divid	der for the input cl	ock.		
			00	/1					
	NL		01	/2					
7.			10	/4					
~		•	11	/8					
	MCx	Bits 5-4	Mode of	control. Setting	MCx = 00h when	Timer_A is not in	use conserves po	wer.	
4			00	Stop mode: t	he timer is halted				
	$1 \wedge N$		01	Up mode: the	e timer counts up	to TACCR0.			
			10	Continuous n	node: the timer co	ounts up to OFFFF	h.		
	Y '		11	Up/down mo	de: the timer cour	nts up to TACCR0	then down to 0000	Dh.	
	Unused	Bit 3	Unused	t					
	TACLR	Bit 2			g this bit resets T/ nd is always read		ler, and the count	direction. The TA	CLR bit is
	TAIE	Bit 1	Timer_	A interrupt ena	able. This bit enab	les the TAIFG inte	errupt request.		
			0	Interrupt disa	bled				
			1	Interrupt ena	bled				
	TAIFG	Bit 0	Timer_	A interrupt flag	1				
MM LZ			0	No interrupt p	pending				
	TACTL = TA	SSEL_2	+ M0	C_1;		// src	from SM	ICLK, uj	o mode

National Ising Hua University

Timer Mode

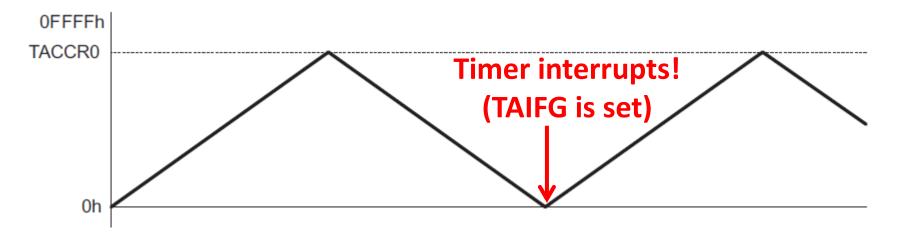

- •MCx=00: Stop mode
 - The timer is halted
- •MCx=01: Up mode
 - The timer repeatedly counts from 0 to TACCR0
- MCx=10: Continuous mode
 - The timer repeatedly counts from 0 to 0FFFFh
- •MCx=11: Up/down mode
 - The timer repeatedly counts from 0 to TACCR0 and back down to 0

The up mode is used if the timer period must be **different** from **OFFFFh** counts.

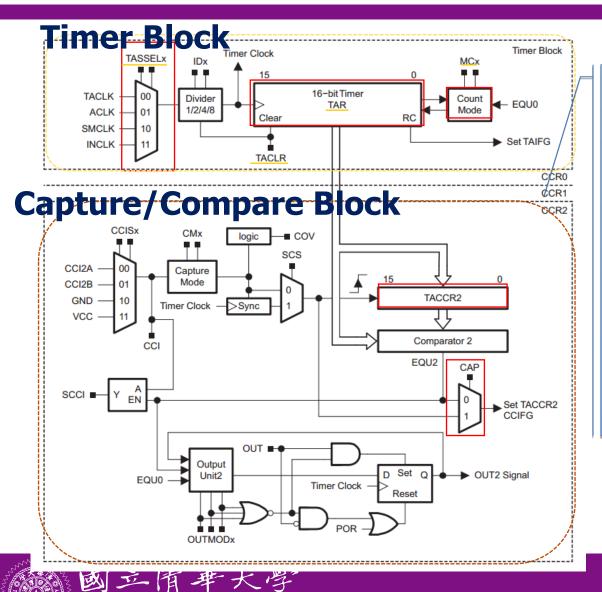

- 1. Timer period 100 \rightarrow store 99 to TACCR0
- 2. When TACCR0 == 99, set TACCR0 CCIFG interrupt flag
- 3. Reset timer to 0 and set TAIFG interrupt flag

Continuous Mode

- In the continuous mode, the timer repeatedly counts up to 0FFFFh and restarts from zero
- The TAIFG interrupt flag is set when the timer resets from 0FFFFh to zero



Up/Down Mode


 The up/down mode is used if the timer period must be different from 0FFFFh counts, and if a symmetrical pulse generation is needed.

\rightarrow The period is twice the value in TACCR0

Timer_A Capture/Compare Block

- May contain several Capture/Compare Blocks
- Each Capture/Compare Block is controlled by a control register, TACCTLx
- Inside each

Capture/Compare Block, the Capture/Compare Register, **TACCRx**, holds the count to configure the timer

National Tsing Hua University

Modes of Capture/Compare Block

- Compare mode:
 - Compare the value of TAR with the value stored in TACCRn and update an output when they match
- Capture mode: used to record time events
 - Records the "time" (value in TAR) at which the input changes in TACCRx
 - The input, usually CCIxA and CCIxB, can be either external or internal from another peripheral or software, depending on board connections

TACCR0 = 24000; // represent 2 sec with 12kHz clk src

TACCTLx, Capture/Compare Control Register

15	14		13	12	11	10	9	8
	СМх		CCISx		SCS	SCCI	Unused	CAP
rw-(0)	rw-(0)	-	rw-(0)	rw-(0)	rw-(0)	r	rO	rw-(0)
7	6		5	4	3	2	1	0
OUTMODx			CCIE	CCI	OUT	COV	CCIFG	
rw-(0)	rw-(0)		rw-(0)	rw-(0)	r	rw-(0)	rw-(0)	rw-(0)
СМх	Bit 15-14	Captu	ire mode					
		00	No capture					
		01	Capture on	rising edge				
		10	Capture on	falling edge				
		11	Capture on	both rising and fal	ling edges			
CCISx	Bit 13-12			put select. These b gnal connections.	oits select the TAC	CCRx input signal.	See the device-sp	ecific data
		00	CCIxA					
		01	CCIxB					
		10	GND					
		11	V _{cc}					
SCS	Bit 11	Synch	hronize capture	e source. This bit is	s used to synchror	nize the capture inp	out signal with the	timer clock.
		0	Asynchron	ous capture				
		1	Synchrono	us capture				
SCCI	Bit 10		hronized captu ad via this bit	re/compare input.	The selected CCI	input signal is latch	ned with the EQU	x signal and can
Unused	Bit 9	Unus	ed. Read only.	Always read as 0.				
	tional Tsing F	lua U	niversity					22

TACCTL cont'd

САР	Bit 8	Capture mode
		0 Compare mode
		1 Capture mode
OUTMODx	Bits 7-5	Output mode. Modes 2, 3, 6, and 7 are not useful for TACCR0, because EQUx = EQU0.
		000 OUT bit value
		001 Set
		010 Toggle/reset
		011 Set/reset
		100 Toggle
		101 Reset
		110 Toggle/set
		111 Reset/set
CCIE	Bit 4	Capture/compare interrupt enable. This bit enables the interrupt request of the corresponding CCIFG flag.
		0 Interrupt disabled
		1 Interrupt enabled
CCI	Bit 3	Capture/compare input. The selected input signal can be read by this bit.
OUT	Bit 2	Output. For output mode 0, this bit directly controls the state of the output.
		0 Output low
		1 Output high
cov	Bit 1	Capture overflow. This bit indicates a capture overflow occurred. COV must be reset with software.
		0 No capture overflow occurred
		1 Capture overflow occurred
CCIFG	Bit 0	Capture/compare interrupt flag
		0 No interrupt pending
		1 Interrupt pending
Z WAUNES NO	tional Ising	Hua University

Sample Code 1 for Timer_A

- Goal: simplest way to flash an LED at 1 Hz
 - Need an event to trigger the flashing
 - \rightarrow counter (TAR) overflow
 - Need a way to detect the event
 - \rightarrow CPU polling
- How to make TAR overflow at 1 Hz?
 - Use SMCLK clock (discussed later) at 800 KHz
 - When TAR (16 bits) overflows, it has counted 2¹⁶, equivalent to a period of 2¹⁶/800KHz ≈ 0.08 sec
 - Divide the frequency of the clock by 8 to give a period of about 0.66 sec → close enough!
 - Continuously count up; on overflow return to 0

Sample Code 1 for Timer_A

```
#define LED1 BIT0
void main(void) {
  WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer
  P1OUT = \approx LED1;
  P1DIR = LED1;
  TACTL = MC 2|ID 3|TASSEL 2|TACLR; //Setup Timer A
  for (;;) { // Loop forever
    while (TACTL bit.TAIFG == 0) { // Wait overflow
    } // CPU polling and doing nothing
    TACTL bit.TAIFG = 0; // Clear overflow flag
    P1OUT ^= LED1; // Toggle LEDs
  } // Back around infinite loop
```


Sample Code Settings Explained

The following symbols are defined in header file:

- MC_2: set MC of TACTL to 10 (continuous mode)
- ID_3: set ID of TACTL to 11 (divide freq. by 8)
- TASSEL_2: set TASSEL to 10 (use SMCLK)
- TACLR: clear the counter, the divider, and the direction of the count

Sample Code 2 for Timer_A

- Can have more accurate time if we can control the amount to count
 - The maximum desired value of the count is programmed into TACCR0
 - TAR starts from 0 and counts up to the value in TACCR0, after which it returns to 0 and sets TAIFG
 - Thus the period is TACCR0+1 counts
 - With SMCLK (800KHz) divided down to 100 KHz, we need 50,000 counts for a delay of 0.5 sec → store 49,999 in TACCR0

```
TACCR0 = 49999; // Upper limit of count for TAR
TACTL = MC_1 | ID_3 | TASSEL_2 | TACLR; // Set up and start Timer A
// "Up to CCR0" mode, divide clock by 8, clock from SMCLK, clear timer
```


- Basic concepts of timers
- MSP430 timers
- An example of using MSP430 Timer_A
- Clocks in MSP430

Theoretically, One Clock Is Enough

- A clock is a square wave signal whose edges trigger hardware
- A clock source, e.g. crystal, to drive CPU directly, which is divided down by a factor of 2 or 4 for the main bus and rest of circuit board
- But, systems have conflicting requirements
 - Low power, fast start/stop, accuracy

Different Requirements for Clocks

• Devices often in a low-power mode until some event occurs, then must wake up and handle event rapidly

Clock must get to be stabilized quickly

- Devices also need to keep track of real time: (1) can wake up periodically, or (2) time-stamp external events
- Therefore, two kinds of clocks often needed:
 - A fast clock to drive CPU, which can be started and stopped rapidly but need not be particularly accurate
 - A slow clock that runs continuously to monitor real time, which must use little power and be accurate

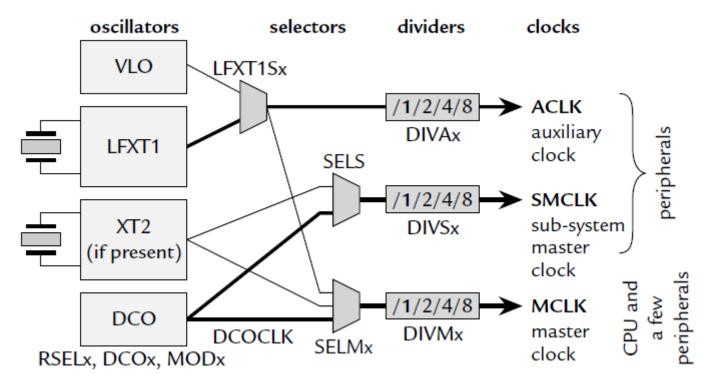
Different Requirements for Clocks

- Different clock sources also have different characteristics
 - Crystal: accurate and stable (w.r.t. temperature or time); expensive, delicate, drawing large current, external component, longer time to start up/stabilize
 - Resistor and capacitor (RC): cheap, quick to start, integrated within MCU and sleep with CPU; poor accuracy and stability
 - Ceramic resonator and MEMS clocks in between

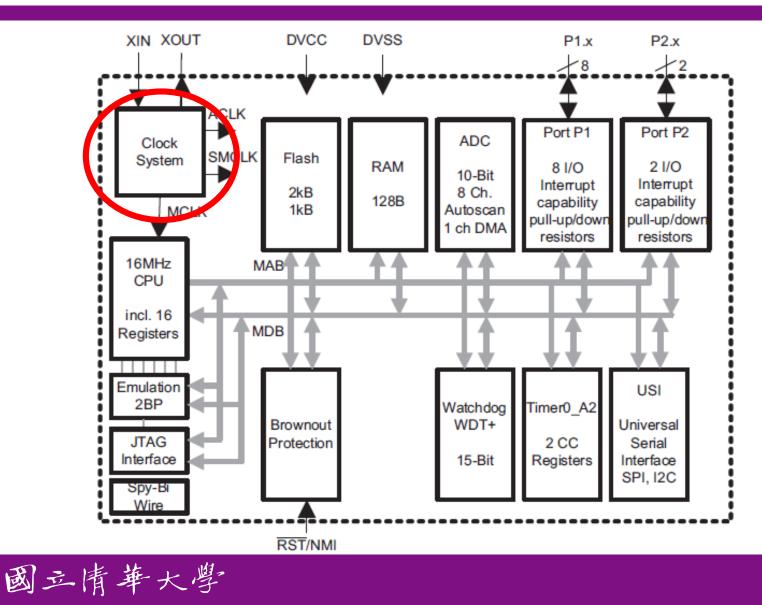
Need multiple clocks

Clocks in MSP430

- MSP430 addresses the conflicting demands for high performance, low power, precise frequency by using 3 internal clocks, which can be derived from up to 4 sources
 - Master clock (MCLK): for CPU & some peripherals, normally driven by *digitally controlled oscillator* (DCO)
 - Subsystem master clock (SMCLK): distributed to peripherals, normally driven by DCO
 - Auxiliary clock (ACLK): distributed to peripherals, normally for real-time clocking, normally driven by a low-frequency crystal oscillator, typically at 32 KHz


Clock Sources

- Low- or high-frequency crystal oscillator, LFXT1:
 - External; used with a low- or high frequency crystal; an external clock signal can also be used; connected to MSP430 through XIN and XOUT pins
- High-frequency crystal oscillator, XT2:
 - External; similar to LFXT1 but at high frequencies
- Very low-power, low-frequency oscillator, VLO:
 - Internal at 12 KHz; alternative to LFXT1 when accuracy of a crystal is not needed; may not available in all devices
- Digitally controlled oscillator, DCO:
 - Internal; a highly controllable RC oscillator that starts fast


From Sources to Clocks

- Typical sources of clocks:
 - MCLK, SMCLK: DCO (typically at 1.1 MHz)
 - ACLK: LFXT 1 (typically at 32 KHz)

MSP430 Clock System

National Tsing Hua University

Controlling Clocks

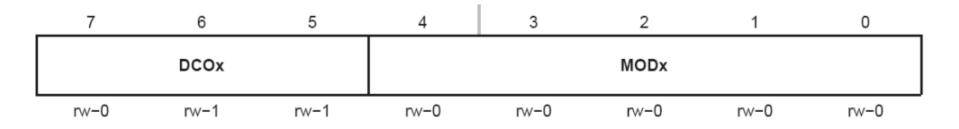
- In MSP430, the Basic Clock Module is also an IO peripheral
- Being an IO peripheral, it can be controlled by registers, DCOCTL and BCSCTL1–3
 - DCOCTL (056h): configure DCO
 - BCSCTL1 (basic clock system control 1, 057h): configure ACLK
 - BCSCTL2 (basic clock system control 2, 058h): configure MCLK, SMCLK
 - BCSCTL3 (basic clock system control 3, 053h): control LFXT1/VLO

Control Registers for Clocks

Control Registers for Clock System Table 5-1. Basic Clock Module+ Registers

Register	Short Form	Register Type	Address	Initial State
DCO control register	DCOCTL	Read/write	056h	060h with PUC
Basic clock system control 1	BCSCTL1	Read/write	057h	087h with POR ⁽¹⁾
Basic clock system control 2	BCSCTL2	Read/write	058h	Reset with PUC
Basic clock system control 3	BCSCTL3	Read/write	053h	005h with PUC ⁽²⁾
SFR interrupt enable register 1	IE1	Read/write	000h	Reset with PUC
SFR interrupt flag register 1	IFG1	Read/write	002h	Reset with PUC

Some of the register bits are also PUC initialized (see Section 5.3.2).


The initial state of BCSCTL3 is 000h in the MSP430AFE2xx devices.

 DCOCTL and BCSCTL1 combined define the frequency of DCO, among other settings

DCOCTL (at Memory Address 056h)

DCOCTL, DCO Control Register

 DCOx
 Bits
 DCO frequency select.
 These bits select which of the eight discrete DCO

 7-5
 frequencies of the RSELx setting is selected.

 MODx
 Bits
 Modulator selection.
 These bits define how often the f_{DCO+1} frequency is

4-0 used within a period of 32 DCOCLK cycles. During the remaining clock cycles (32–M Tag-Length-Value used. Not useable when DCOx=7.

 $DCOCTL = CALDCO_1MHZ;$

// Set DCO step + modulation

 Tag-Length-Value (TLV) stores device-specific information in the flash memory to set DCOCTL and BCSCTL1 for DCO frequency

Label	Description	Offset
CALBC1_1MHZ	Value for the BCSCTL1 register for 1 MHz, $T_A = 25^{\circ}C$	0x07
CALDCO_1MHZ	Value for the DCOCTL register for 1 MHz, $T_A = 25^{\circ}C$	0x06
CALBC1_8MHZ	Value for the BCSCTL1 register for 8 MHz, $T_A = 25^{\circ}C$	0x05
CALDCO_8MHZ	Value for the DCOCTL register for 8 MHz, $T_A = 25^{\circ}C$	0x04
CALBC1_12MHZ	Value for the BCSCTL1 register for 12 MHz, $T_A = 25^{\circ}C$	0x03
CALDCO_12MHZ	Value for the DCOCTL register for 12 MHz, $T_A = 25^{\circ}C$	0x02
CALBC1_16MHZ	Value for the BCSCTL1 register for 16 MHz, $T_A = 25^{\circ}C$	0x01
CALDCO_16MHZ	Value for the DCOCTL register for 16 MHz, $T_A = 25^{\circ}C$	0x00

DCO Calibration Data (Device Specific)

BCSCTL1 = CALBC1_1MHZ;

// Set range

DCOCTL = CALDCO_1MHZ;

BCSCTL1, Basic Clock System Control Register 1

7	6		5	4	3	2	1	0		
XT2OFF	XTS ⁽¹⁾⁽²⁾		DIVAx		RSELx					
rw-(1)	rw-(0)		rw-(0)	rw-(0)	rw-0	rw-1	rw-1	rw-1		
XT2OFF	Bit 7	XT2 o	off. This bit turns	s off the XT2 oscill	ator					
		0 XT2 is on								
		1	XT2 is off if i	2 is off if it is not used for MCLK or SMCLK.						
XTS	Bit 6	LFXT	1 mode select.							
		0 Low-frequency mode								
		1	High-frequer	ncy mode						
DIVAx	Bits 5-4	Divide	er for ACLK							
		00	/1							
		01	/2							
		10 /4								
		11	/8							
RSELx	Bits 3-0	Range select. Sixteen different frequency ranges are available. The lowest frequency range is selected by setting RSELx=0. RSEL3 is ignored when DCOR = 1.						is selected by		

BCSCTL1 = CALBC1 1MHZ;

// Set range

BCSCTL2

National Tsing Hua University

BCSCTL2, Basic Clock System Control Register 2 **SMCLK** MCLK 0 DCOR⁽¹⁾⁽²⁾ SELMx DIVMx DIVSx SELS rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 SELMx Select MCLK. These bits select the MCLK source. Bits 7-6 00 DCOCLK DCOCLK 01 XT2CLK when XT2 oscillator present on-chip. LFXT1CLK or VLOCLK when XT2 oscillator not 10 present on-chip. 11 LFXT1CLK or VLOCLK **DIVMx** Bits 5-4 Divider for MCLK 00 /1 /2 01 14 10 11 /8 SELS Bit 3 Select SMCLK. This bit selects the SMCLK source. DCOCLK 0 1 XT2CLK when XT2 oscillator present. LFXT1CLK or VLOCLK when XT2 oscillator not present DIVSx Bits 2-1 Divider for SMCLK 00 /1 BCSCTL2 SELM 3 + DIVM 3; MCLK = VLO/8// = /8 11 國立清華大學

BCSCTL3

National Tsing Hua University

In MSP430G2231 7 0 6 з XT2OF⁽²⁾ XT2Sx LFXT1Sx XCAPx⁽¹⁾ LFXT1OF⁽¹⁾ rw-0 rw-0 rw-0 rw-1 r0 r-(1) Bits 7-6 XT2 range select. These bits select the frequency range for XT2. XT2Sx 0.4- to 1-MHz crystal or resonator 00 01 1- to 3-MHz crystal or resonator 10 3- to 16-MHz crystal or resonator 11 Digital external 0.4- to 16-MHz clock source LFXT1Sx Bits 5-4 Low-frequency clock select and LFXT1 range select. These bits select between LFXT1 and VLO when XTS = 0, and select the frequency range for LFXT1 when XTS = 1. When XTS = 0: 00 32768-Hz crystal on LFXT1 01 Reserved 10 VLOCLK (Reserved in MSP430x21x1 devices) 11 Digital external clock source When XTS = 1 (Not applicable for MSP430x20xx devices) 00 0.4- to 1-MHz crystal or resonator 01 1- to 3-MHz crystal or resonator 10 3- to 16-MHz crystal or resonator BCSCTL3 // Enable VLO as MCLK/ACLK src = LFXT1S 01 Reserved 40 VILOOL IZ 國立清華大學

BCSCTL3, Basic Clock System Control Register 3

Interrupt Flag Register 1 (IFG1)

• OFIFG oscillator-fault flag is set when an oscillator fault (LFXT1OF) is detected.

IFG1, Interrupt Flag Register 1

7	6	5	4	3	2	1	0		
						OFIFG			
						rw-1			
	Bits 7-2 Th	These bits may be used by other modules. See device-specific data sheet.							
OFIFG		Oscillator fault interrupt flag. Because other bits in IFG1 may be used for other modules, it is recommended to set or clear this bit using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B instructions.							
	0	0 No interrupt pending							
	1	1 Interrupt pending							
	Bits 0 Th	This bit may be used by other modules. See device-specific data sheet.							

IFG1 &= ~OFIFG;

// Clear OSCFault flag

Recall Sample Code for Timer_A

• Flash red LED at 1 Hz if SMCLK at 800 KHz

```
#include <msp430g2553.h>
#define LED1 BIT0
void main (void) {
  WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer
  P1OUT = \sim LED1;
  P1DIR = LED1;
  TACCR0 = 49999;
  TACTL = MC 1 | ID 3 | TASSEL 2 | TACLR; //Setup Timer A
  //up mode, divide clk by 8, use SMCLK, clr timer
  for (;;) { // Loop forever
    while (!(TACTL&TAIFG)) { // Wait time up
    } // doing nothing
    TACTL &= ~TAIFG; // Clear overflow flag
    P1OUT ^= LED1; // Toggle LEDs
  } // Back around infinite loop
```

Sample Code for Setting Clocks

• Set DCO to 1MHz, enable crystal

```
#include <msp430g2231.h> (#include <msp430g2553.h> )
void main(void) {
 WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
  if (CALBC1 1MHZ == 0 \times FF || CALDCO 1MHZ == 0 \times FF)
     while(1); // If TLV erased, TRAP!
 BCSCTL1 = CALBC1 1MHZ; // Set range
 DCOCTL = CALDCO 1MHZ;
  P1DIR = 0x41; // P1.0 \& 6 outputs (red/green LEDs)
  P1OUT = 0x01; // red LED on
 BCSCTL3 |= LFXT1S 0; // Enable 32768 crystal
  IFG1 &= ~OFIFG;// Clear OSCFault flag
  P1OUT = 0; // red LED off
 BCSCTL2 |= SELS 0 + DIVS 3; // SMCLK = DCO/8
  // infinite loop to flash LEDs
```

國立情華大学 National Tsing Hua University