
National Tsing Hua University

CS4101 嵌入式系統概論

Timers and Clocks

Prof. Chung-Ta King
Department of Computer Science

National Tsing Hua University, Taiwan

Materials from MSP430 Microcontroller Basics, John H. Davies,
Newnes, 2008

National Tsing Hua University
1

Recall the Container Thermometer

• Container thermometer: monitor the temperature of
the interior of a container

 Monitor the temperature
every 5 minutes

 Flash LED alarm at 1 Hz

 If the temperature rises above
a threshold, flash the LED alarm
at 3 Hz and notify backend server

 If the temperature drops below
a threshold, return the LED alarm
to normal and notify the server

Need to know exact time!

National Tsing Hua University
2

Time-based Control

Many embedded systems are used to control things
based on time or that have time constraints

• Traffic light controller

• Power meter

• Pacemaker (心跳節律器)

• Subway collision avoidance system

• Airbag

• ...

How to track real (wall clock) time?

National Tsing Hua University
3

Recall First MSP430 Program

#include <msp430.h>

void main(void) {

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

P1DIR |= 0x41; // set P1.0 & 6 to outputs

//(red & green LEDs)

for(;;) {

volatile unsigned int i;

P1OUT ^= 0x41; // Toggle P1.0 & 6 using XOR

i = 50000; // Delay

do (i--);

while (i != 0);

}

}

How much time?

National Tsing Hua University
4

Problems Regarding Time

• Using software delay loops

 Waste of processor because it is not available for other
operations

 Difficult to translate into actual time

 Given a time for the delay, difficult to translate into
number of iterations

 The delays are unpredictable, e.g., compiler optimization,
interrupts

We need an independent reference of time!

National Tsing Hua University
5

Reference of Time

• The simplest hardware to provide a reference of
time is a counter that counts every fixed unit of time
 timer

 The actual time can be obtained by multiplying the
counter with the clock interval time

 The accuracy and stability of the clock is critical

Where to put the timers?

Counter
Clock

National Tsing Hua University
6

Make Timer an IO Device!

National Tsing Hua University
7

Timers Being IO Devices

• Have internal registers with addresses in the
memory space for the CPU to access

National Tsing Hua University
8

Typical Registers in a Timer

• The counter itself

• Target for counting

• Control settings

• Others: clock source
selection, flags

Counter

Target Time

Comparator

Control

National Tsing Hua University
9

Outline

• Basic concepts of timers

• MSP430 timers

• An example of using MSP430 Timer_A

• Clocks in MSP430

National Tsing Hua University
10

MSP430 Timers

Contain several timers, including:

• Timer_A

 A 16-bit counter, TAR, with three capture/compare
registers.

• Watchdog timer

 Count up and reset MSP430 when it reaches its limit

 The code must keep clearing the counter before the limit
is reached to prevent a reset

 Protect system against failure of software, such as
unintended, infinite loops

National Tsing Hua University
11

Registers in Timer_A

• TAR (0170h): the counter itself

• TACCR0 (0172h): target for counting

• TACTL (0160h): control settings

• Others: clock source selection, flags

National Tsing Hua University

Inside Timer_A

• Timer_A Control Register: TACTL

12

National Tsing Hua University

Typical Operations of Timer_A

13

Continuously
count up/down

Is time
up yet?

TACCRx

Yes

If TAIE=1, setting of
TAIFG causes an
interrupt to the CPU

TAIFG has to be
explicitly cleared by
the CPU

National Tsing Hua University
14

Timer_A Control Register (TACTL)

• TASSELx: Timer_A clock source select

• IDx: input divider

• MCx: mode control

• TACLR: Timer_A clear

• TAIE: Timer_A interrupt enable

• TAIFG: Timer_A interrupt flag

National Tsing Hua University
15TACTL = TASSEL_2 + MC_1; // src from SMCLK, up mode

National Tsing Hua University

Timer Mode

•MCx=00: Stop mode
 The timer is halted

•MCx=01: Up mode
 The timer repeatedly counts from 0 to TACCR0

•MCx=10: Continuous mode
 The timer repeatedly counts from 0 to 0FFFFh

•MCx=11: Up/down mode
 The timer repeatedly counts from 0 to TACCR0 and back

down to 0

16

National Tsing Hua University

Up Mode

The up mode is used if the timer period must be
different from 0FFFFh counts.

1. Timer period 100 store 99 to TACCR0

2. When TACCR0 == 99, set TACCR0 CCIFG interrupt flag

3. Reset timer to 0 and set TAIFG interrupt flag

17

TAIFG is set, and Timer_A
interrupts CPU

National Tsing Hua University

Continuous Mode

• In the continuous mode, the timer repeatedly counts
up to 0FFFFh and restarts from zero

• The TAIFG interrupt flag is set when the timer resets
from 0FFFFh to zero

18

National Tsing Hua University

Up/Down Mode

• The up/down mode is used if the timer period must
be different from 0FFFFh counts, and if a
symmetrical pulse generation is needed.

 The period is twice the value in TACCR0

19

Timer interrupts!
(TAIFG is set)

National Tsing Hua University

Timer_A Capture/Compare Block

20

Timer Block

Capture/Compare Block

• May contain several
Capture/Compare Blocks

• Each Capture/Compare
Block is controlled by a
control register, TACCTLx

• Inside each
Capture/Compare Block,
the Capture/Compare
Register, TACCRx, holds the
count to configure the
timer

National Tsing Hua University

Modes of Capture/Compare Block

• Compare mode:

 Compare the value of TAR with the value stored in TACCRn
and update an output when they match

• Capture mode: used to record time events

 Records the “time” (value in TAR) at which the input
changes in TACCRx

 The input, usually CCIxA and CCIxB, can be either external
or internal from another peripheral or software,
depending on board connections

21

TACCR0 = 24000; // represent 2 sec with 12kHz clk src

National Tsing Hua University

TACCTL

22

National Tsing Hua University

TACCTL cont’d

23

National Tsing Hua University
24

Sample Code 1 for Timer_A

• Goal: simplest way to flash an LED at 1 Hz
 Need an event to trigger the flashing
 counter (TAR) overflow

 Need a way to detect the event
 CPU polling

• How to make TAR overflow at 1 Hz?
 Use SMCLK clock (discussed later) at 800 KHz

 When TAR (16 bits) overflows, it has counted 216,
equivalent to a period of 216/800KHz ≈ 0.08 sec

 Divide the frequency of the clock by 8 to give a period of
about 0.66 sec close enough!

 Continuously count up; on overflow return to 0

National Tsing Hua University
25

Sample Code 1 for Timer_A

#define LED1 BIT0

void main(void) {

WDTCTL = WDTPW|WDTHOLD; // Stop watchdog timer

P1OUT = ~̃LED1;

P1DIR = LED1;

TACTL = MC_2|ID_3|TASSEL_2|TACLR; //Setup Timer_A

for (;;) { // Loop forever

while (TACTL_bit.TAIFG == 0) { // Wait overflow

} // CPU polling and doing nothing

TACTL_bit.TAIFG = 0; // Clear overflow flag

P1OUT ˆ= LED1; // Toggle LEDs

} // Back around infinite loop

}

National Tsing Hua University
26

Sample Code Settings Explained

The following symbols are defined in header file:

• MC_2: set MC of TACTL to 10 (continuous mode)

• ID_3: set ID of TACTL to 11 (divide freq. by 8)

• TASSEL_2: set TASSEL to 10 (use SMCLK)

• TACLR: clear the counter, the divider, and the
direction of the count

National Tsing Hua University
27

Sample Code 2 for Timer_A

• Can have more accurate time if we can control the
amount to count

 The maximum desired value of the count is programmed
into TACCR0

 TAR starts from 0 and counts up to the value in TACCR0,
after which it returns to 0 and sets TAIFG

 Thus the period is TACCR0+1 counts

 With SMCLK (800KHz) divided down to 100 KHz, we need
50,000 counts for a delay of 0.5 sec store 49,999 in
TACCR0

National Tsing Hua University
28

Outline

• Basic concepts of timers

• MSP430 timers

• An example of using MSP430 Timer_A

• Clocks in MSP430

National Tsing Hua University
29

Theoretically, One Clock Is Enough

• A clock is a square wave signal whose edges trigger
hardware

• A clock source, e.g. crystal, to drive CPU directly,
which is divided down by a factor of 2 or 4 for the
main bus and rest of circuit board

• But, systems have conflicting requirements

 Low power, fast start/stop, accuracy

National Tsing Hua University
30

Different Requirements for Clocks

• Devices often in a low-power mode until some event
occurs, then must wake up and handle event rapidly

 Clock must get to be stabilized quickly

• Devices also need to keep track of real time: (1) can
wake up periodically, or (2) time-stamp external
events

• Therefore, two kinds of clocks often needed:

 A fast clock to drive CPU, which can be started and
stopped rapidly but need not be particularly accurate

 A slow clock that runs continuously to monitor real time,
which must use little power and be accurate

National Tsing Hua University
31

Different Requirements for Clocks

• Different clock sources also have different
characteristics

 Crystal: accurate and stable (w.r.t. temperature or time);
expensive, delicate, drawing large current, external
component, longer time to start up/stabilize

 Resistor and capacitor (RC): cheap, quick to start,
integrated within MCU and sleep with CPU; poor accuracy
and stability

 Ceramic resonator and MEMS clocks in between

Need multiple clocks

National Tsing Hua University
32

Clocks in MSP430

• MSP430 addresses the conflicting demands for high
performance, low power, precise frequency by using
3 internal clocks, which can be derived from up to 4
sources

 Master clock (MCLK): for CPU & some peripherals,
normally driven by digitally controlled oscillator (DCO)

 Subsystem master clock (SMCLK): distributed to
peripherals, normally driven by DCO

 Auxiliary clock (ACLK): distributed to peripherals, normally
for real-time clocking, normally driven by a low-frequency
crystal oscillator, typically at 32 KHz

National Tsing Hua University
33

Clock Sources

• Low- or high-frequency crystal oscillator, LFXT1:
 External; used with a low- or high frequency crystal; an

external clock signal can also be used; connected to
MSP430 through XIN and XOUT pins

• High-frequency crystal oscillator, XT2:
 External; similar to LFXT1 but at high frequencies

• Very low-power, low-frequency oscillator, VLO:
 Internal at 12 KHz; alternative to LFXT1 when accuracy of a

crystal is not needed; may not available in all devices

• Digitally controlled oscillator, DCO:
 Internal; a highly controllable RC oscillator that starts fast

National Tsing Hua University

From Sources to Clocks

• Typical sources of clocks:
 MCLK, SMCLK: DCO (typically at 1.1 MHz)

 ACLK: LFXT 1 (typically at 32 KHz)

34

National Tsing Hua University
35

MSP430 Clock System

National Tsing Hua University
36

Controlling Clocks

• In MSP430, the Basic Clock Module is also an IO
peripheral

• Being an IO peripheral, it can be controlled by
registers, DCOCTL and BCSCTL1–3

 DCOCTL (056h): configure DCO

 BCSCTL1 (basic clock system control 1, 057h): configure
ACLK

 BCSCTL2 (basic clock system control 2, 058h): configure
MCLK, SMCLK

 BCSCTL3 (basic clock system control 3, 053h): control
LFXT1/VLO

National Tsing Hua University

Control Registers for Clocks

• DCOCTL and BCSCTL1 combined define the
frequency of DCO, among other settings

37

Control Registers for Clock System

National Tsing Hua University
38

DCOCTL (at Memory Address 056h)

DCOCTL = CALDCO_1MHZ; // Set DCO step + modulation

Tag-Length-Value

National Tsing Hua University
39

Tag-Length-Value

• Tag-Length-Value (TLV) stores device-specific
information in the flash memory to set DCOCTL and
BCSCTL1 for DCO frequency

BCSCTL1 = CALBC1_1MHZ; // Set range

DCOCTL = CALDCO_1MHZ;

National Tsing Hua University
40

BCSCTL1

BCSCTL1 = CALBC1_1MHZ; // Set range

National Tsing Hua University
41

BCSCTL2

BCSCTL2 |= SELM_3 + DIVM_3; // MCLK = VLO/8

MCLK SMCLK

National Tsing Hua University
42

BCSCTL3

BCSCTL3 |= LFXT1S_2; // Enable VLO as MCLK/ACLK src

In MSP430G2231

National Tsing Hua University
43

Interrupt Flag Register 1 (IFG1)

• OFIFG oscillator-fault flag is set when an oscillator
fault (LFXT1OF) is detected.

IFG1 &= ~OFIFG; // Clear OSCFault flag

National Tsing Hua University

Recall Sample Code for Timer_A

• Flash red LED at 1 Hz if SMCLK at 800 KHz

44

#include <msp430g2553.h>

#define LED1 BIT0

void main (void) {

WDTCTL = WDTPW|WDTHOLD; // Stop watchdog timer

P1OUT = ~LED1;

P1DIR = LED1;

TACCR0 = 49999;

TACTL = MC_1|ID_3|TASSEL_2|TACLR; //Setup Timer_A

//up mode, divide clk by 8, use SMCLK, clr timer

for (;;) { // Loop forever

while (!(TACTL&TAIFG)) { // Wait time up

} // doing nothing

TACTL &= ~TAIFG; // Clear overflow flag

P1OUT ^= LED1; // Toggle LEDs

} // Back around infinite loop

}

National Tsing Hua University

Sample Code for Setting Clocks

• Set DCO to 1MHz, enable crystal

45

#include <msp430g2231.h> (#include <msp430g2553.h>)

void main(void) {

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

if (CALBC1_1MHZ ==0xFF || CALDCO_1MHZ == 0xFF)

while(1); // If TLV erased, TRAP!

BCSCTL1 = CALBC1_1MHZ; // Set range

DCOCTL = CALDCO_1MHZ;

P1DIR = 0x41; // P1.0 & 6 outputs (red/green LEDs)

P1OUT = 0x01; // red LED on

BCSCTL3 |= LFXT1S_0; // Enable 32768 crystal

IFG1 &= ~OFIFG;// Clear OSCFault flag

P1OUT = 0; // red LED off

BCSCTL2 |= SELS_0 + DIVS_3; // SMCLK = DCO/8

// infinite loop to flash LEDs

}

