
CS 4120 1

Simulation & Testbench

CS 4120 2

Event-Driven Simulation

• Verilog signal values
– { 0, 1, x, z}
– x: unknown, ambiguous
– z: high impedance, open circuit

• An event occurs when a signal changes in value
• Simulation is event-driven if new values are

computed
– only for signals affected by events that have already

occurred, and
– only at those times when changes can occur

CS 4120 3

Event-Driven Simulation

• Operation of a simulator depends on a time-
ordered event list.

• Initial events on the list consist of input
changes. These changes cause events to be
scheduled (and placed on the list) for
execution at a later time.

• Simulation stops when the event list becomes
empty.

CS 4120 4

Simulation without Delay

0 10 20 30 40 50

A = x
B = x
C = x
D = x

A = 1
B = 0

C = 0

D = 1

B = 1

C = 1

D = 0

A = 0

C = 0

D = 1

B = 0

tsim

B

A

C

D

B
A C D

X

X

X

X Y

CS 4120 5

Simulation with Delay

0 10 20 30 40 50

A = x
B = x
C = x
D = x

A = 1
B = 0

C = 0

D = 1

B = 1

C = 1

D = 0

A = 0

C = 0

D = 1

B = 0

tsim

B

A

C

D

B
A C D

X

X

X

X

3 2

13

15

CS 4120 6

Simulation with Inertial Delay
• Inertial delay: amount of time that input pulse must

endure
• Verilog uses the propagation delay as the inertial

delay.
• Multiple events cannot occur on the output in a time

period less than the inertial delay.
• Example: AND with delay = 2ns

A
B
C
C

1 ns

w/o inertial delay

with inertial delay

CS 4120 7

Event De-scheduling

x

x

x

x

���

���

���

���

���

���

��� ���

���

���

���

���

���

�

�

�

�

� �� 	�
� �� ��

B

A
C

D
3 2

����

���

CS 4120 8

Testbench

• Use Verilog module to produce testing
environment including stimulus generation and
response monitoring.

Unit_Under_Test (UUT)stimulus
generator

response
monitor

Design_Unit_Test_Bench

CS 4120 9

initial and Some System Tasks

• initial declares one-shot behaviors

• $monitor is used to observe events

• $time returns simulation time

• $stop stops execution and wait for interactive
input

• $finish returns control to operating system

CS 4120 10

Testbench in Verilog
module Nand_Latch_1 (q, qbar, preset, clear);

output q, qbar;
input preset, clear;

nand #1 G1 (q, preset, qbar),
G2 (qbar, clear, q);

endmodule

module test_Nand_Latch_1; // Design Unit Testbench
reg preset, clear;
wire q, qbar;

Nand_Latch_1 M1 (q, qbar, preset, clear); // Instantiate UUT

initial // Create DUTB response monitor
begin

$monitor ($time, “preset = %b clear = %b q = %b qbar = %b”, preset, clear, q, qbar);
end

initial
begin // Create DUTB stimulus generator

#10 preset =0; clear = 1;
#10 preset =1; $stop; // Enter . to proceed
#10 clear =0;
#10 clear =1;
#10 preset =0;

end

initial
#60 $finish; // Stop watch

endmodule

1

1

G1

G2

q

qbar

preset

clear

CS 4120 11

Simulation Results
x

x

x

0 10 20 30 40 50
tsim

1

tsim

tsim

tsim

1

1

1

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

31

32x

12

11

preset

clear

q

qbar

1

1

G1

G2

q

qbar

preset

clear

0 preset = x clear = x q = x qbar = x
10 preset = 0 clear = 1 q = x qbar = x
11 preset = 0 clear = 1 q = 1 qbar = x
12 preset = 0 clear = 1 q = 1 qbar = 0
20 preset = 1 clear = 1 q = 1 qbar = 0
30 preset = 1 clear = 0 q = 1 qbar = 0
31 preset = 1 clear = 0 q = 1 qbar = 1
32 preset = 1 clear = 0 q = 0 qbar = 1
40 preset = 1 clear = 1 q = 0 qbar = 1

CS 4120 12

Logic System, Data Types and Operators

CS 4120 13

Variables

• Nets: structural connectivity

• Registers: abstraction of storage (may or may
not be physical storage)

• Both nets and registers are informally called
signals, and may be either scalar or vector.

CS 4120 14

Logic Values

• Verilog signal values
– 0: logical 0 or a FALSE condition
– 1: logical 1, or a TRUE condition
– x: an unknown value
– z: a high impedance condition

• May have associated strengths for switch-level
modeling of MOS devices

CS 4120 15

Example

xxx0x

xxx0z

xx101

00000

xz10and

CS 4120 16

Net Data Types
• wire (default): only to establish connectivity

• tr i: same as wire, but explicitly state that it is
tri-stated

• wand, wor : wired AND and OR with multiple
drivers

• tr iand, tr ior : tri-stated wired AND or OR with
multiple drivers

• supply0, supply1: connected to Gnd and Vdd

• tr i0, tr i1: resistive pull-down and pull-up nets

• tr ireg: a charge-stored net

CS 4120 17

Resolution Rules (Same Driving Strength)

wire/tr i 0 1 x z
0 0 x x 0
1 x 1 x 1
x x x x x
z 0 1 x z

tr iad /
wand 0 1 x z

0 0 0 0 0
1 0 1 x 1
x 0 x x x
z 0 1 x z

tr ior /wor 0 1 x z
0 0 1 x 0
1 1 1 1 1
x x 1 x x
z 0 1 x z

CS 4120 18

Net Value Assignment

• Value explicitly assigned by
– continuous assignment

– force… releaseprocedural continuous
assignment

• Value implicitly assigned by
– being connected to an output terminal of a

primitive

– being connected to an output port of a module

CS 4120 19

Net Examples

• wirex;

• wire [15:0] data;

• data [5]

• data [5:3]

• wire scalared [0:7] control_a;

• wirevectored [0..7] control_b;

• wand a;

• wire a = b + c;

CS 4120 20

Initial Value & Undeclared Nets

• At time tsim = 0
– Nets driven by primitives, module or continuous

assignment are determined by their drivers, which
defaults to x

– Nets without drivers have default value z

• Undeclared nets
– default type: wire

– ‘defaultnettypecompiler directive can specify
others except for supply0 and supply1

CS 4120 21

Register Data Types

• reg: store a logic value

• integer : support computation

• time: store time as 64-bit unsigned quantity

• real: store values (e.g., delay) as real
numbers

• realtime: store time as real numbers

CS 4120 22

Register Examples

• reg a, b;

• reg [15:0] counter, shift_reg;

• integer c;

CS 4120 23

Register Value Assignment
• In simulation, a register variable has initial value x
• An undeclared identifier is assumed as a net,

which is illegal within a behavior
• A register may be assigned value only within

– a procedural statement
– a user-defined sequential primitive
– a task
– a function

• A reg object may never be
– the output of a primitive gate
– the target of a continuous assignment

CS 4120 24

Addressing Net and Register Variables

• MSB of a part-select of a register = leftmost
array index

• LSB = rightmost array index

• If index of part-select is out of bounds, x is
returned

• If word [7:0] = 8’b00000100
– word [3:0] = 4

– word [5:1] = 2

CS 4120 25

Variables and Ports

NoYesNoRegister

YesYesYesNet

Inout portOutput portInput portVariable type

CS 4120 26

Memory

• Memory is a collection of registers

� reg [31:0] cache [0:1023];

1 k memory of 32-bit words

� reg [31:0] one_word;

� reg one_bit;

• Individual bits cannot be addressed directly

� one_word = cache[988];

� one_bit = one_word[3];

CS 4120 27

Other Data Types
• integer

– Negative integers stored in 2’s complement format
– Represented internally to the wordlength (at least 32 bits) of a host machine
– Example:

integer Array_of_Ints [1:100];

• real
– Stored in double precision, typically 64-bit value
– May not be connected to a port or terminal of a primitive

• time
– Stored as unsigned 64-bit value
– May not be used in a module port or an input (or output) of a primitive
– Example:

• time T_samples [1:100];

• realtime
– Time values stored in real number format

CS 4120 28

Scope of a Variable
• The scope of a variable is the module, task,

function or named procedural block (begin…end)
in which it is declared.

• A variable may be referenced directly by its
identifier within the scope in which it is declared.

parent_module

child_module

NET or
REGISTER

NET NET or
REGISTER

NET

NET

NET

Actual

Formal

CS 4120 29

Hierarchical De-Referencing

• To reference a variable defined inside an
instantiated module

• Supported by a variable’s hierarchical path
name
– X.w
– X.Y.Z.w

Module A - Instance X

Module B - Instance Y

Module C - Instance Z
wire w

wire w

CS 4120 30

Example
module test_Add_rca_4();

reg [3:0] a, b;
reg c_in;
wire [3:0] sum;
wire c_out;
initial

begin
$monitor ($time, “c_out= %b c_in4=%b c_in3= %b

c_in2= %b c_in= %b”,
c_out, M1.c_in4, M1.c_in3, M1.c_in2, c_in);

end
initial

begin
// Stimulus patterns go here

end
Add_rca_4 M1 (sum, c_out, a, b, c_in); // module declaration

endmodule

module Add_rca_4 (sum, c_out, a, b, c_in);
output [3:0] sum;
output c_out;
input [3:0] a, b;
input c_in;
wire c_in4, c_in3, c_in2;

Add_full G1 (sum[0], c_in2, a[0], b[0], c_in);
Add_full G2 (sum[1], c_in3, a[1], b[1], c_in2);
Add_full G3 (sum[2], c_in4, a[2], b[2], c_in3);
Add_full G4 (sum[3], c_out, a[3], b[3], c_in4);

endmodule

CS 4120 31

Strings

• No explicit data type

• Must be stored in properly sized reg (array)
– reg [15:0] string_holder; //store 2 characters

• If an assignment to an array consists of less
characters than the array will accommodate,
zeros are filled in the unused positions,
beginning at MSB.

CS 4120 32

Constants

• Declared with parameter
– parameter size = 16;

• reg [size-1:0] a;

– parameter b = 2’b01;

– parameter av_delay = (min_delay + max_delay) /
2;

• Value may not be changed during simulation

• Value can be changed by direct substitution or
indirect substitution during compilation

CS 4120 33

Module with Parameters

• Sometimes, the function of a block does not
change over designs
– Only the size changes

– Design once and re-use

16K

1M

cache cache

CS 4120 34

Direct Substitution
module modXnor (y_out, a, b);

parameter size = 8, delay = 15;
output [size-1:0] y_out;
input [size-1:0] a, b;
wire [size-1:0] #delay y_out = a~^b; // bitwise xnor

endmodule

module Param;
wire [7:0] y1_out;
wire [3:0] y2_out;
reg [7:0] b1, c1;
reg [3:0] b2, c2;

modXnor G1 (y1_out, b1, c1); // use default parameters
modXnor #(4, 5) G2 (y2_out, b2, c2); // override parameters

endmodule

Notes: a module instantiation may not have delay associated with it;
a UDP declaration may not contain parameter declarations;
parameters may not be associated with a primitive gate.

CS 4120 35

Indirect Substitution
module hdref_Param; // a top level module

wire [7:0] y1_out;
wire [3:0] y2_out;
reg [7:0] b1, c1;
reg [3:0] b2, c2;

modXnor G1 (y1_out, b1, c1), G2 (y2_out, b2, c2); // instantiation
endmodule

module annotate; // a separate annotation module
defparam

hdref_Param.G2.size = 4, // parameter assignment
hdref_Param.G2.delay = 5; // hierarchical reference name

endmodule

module modXnor (y_out, a, b);
parameter size = 8, delay = 15;
output [size-1:0] y_out;
input [size-1:0] a, b;
wire [size-1:0] #delay y_out = a~^b; // bitwise xnor

endmodule

CS 4120 36

Verilog Operators

Expression3Conditional

Binary word1Shift

Boolean value2Relational

Boolean value2Logical

Bit1Reduction

Binary word2Bitwise

Binary word2 Arithmetic

ResultNumber of
Operands

Operator

CS 4120 37

Arithmetic Operators

• Binary: +, -, * , /, %

• Unary: +, -

• Examples:
– assign sum = A + B;

– assign diff = A – B;

– assign neg = -A;

CS 4120 38

Bitwise Operators
• ~, &, |, ^, ~^, ^~
• Shorter operand will extend to the size of

longer operand by padding bits with 0
• Examples:

expression result
~(1010) 0101
(01) & (11) 01
(01) | (11) 11
(01) ^ (11) 10
(01) ~^ (11) 01

CS 4120 39

Reduction Operators

• Unary operators
• Return single-bit value
• &, ~&, |, ~|, ^, ~^, ^~
• Examples:

expression result
&(0101) 0
|(0101) 1
&(01xx) 0
|(01xx) 1

CS 4120 40

Logical Operators

• !, &&, ||, ==, !=, ===, !==

• Examples:
– if (b != c) && (index == 0) …
– if (inword == 1) || (a != d) …

xxxxx

xxxxz

xx101

xx010

xz10= =

1000x

0100z

00101

00010

xz10= = =

CS 4120 41

Other Operators

• Relational: <, <=, >, >=
– e.g., if (a < size –1) || (b >= 3) …

• Shift: <<, >>:
– e.g., result = (a << 3);

• Conditional: ?:
– e.g., y= (a==b) ? a : b;

• Concatenation: { ,}
– e.g., { a,b} …
– e.g., { 4{ a} } … (equal to { a, a, a, a})

CS 4120 42

More on Conditional Operator

wire [1:0] select;
wire [15:0] D1, D2, D3, D4;
wire [15:0] bus = (select == 2�b00) ? D1 :

(select == 2�b01) ? D2 :
(select == 2�b10) ? D3 :
(select == 2�b11) ? D4 : 16�bx

• “z” is not allowed in conditional_expression.

• If conditional_expression is ambiguous, both
true_expression and false_expression are evaluated, and the
result is calculated on a bitwise basis according to the truth
table.

xxxx

x1x1

xx00

x10? :

CS 4120 43

Expressions and Operands
• Expressions combine operands with operators to produce resultant

values
- Examples

- assign THIS_SIG = A_SIG ^ B_SIG;
- @ (SET or RESET) begin … end

• A operand may be compose of
– Nets
– Registers
– Constants
– Numbers
– Bit-select of a net or a register
– Part-select of a net or a register
– Memory element
– A function call
– Concatenation of any of the above

CS 4120 44

Operator Precedence

Highest unary
multiplication, division, modulus
add, subtract
shift
relational

Lowest conditional

If unsure, use parentheses!

