
Computer Architecture

Fall, 2022

Week 8

2021.10.31

組別：＿＿＿＿＿ 簽名：＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿

＿＿＿＿＿＿＿＿＿

Group6

Which of the following statements are true?

(A) 0 10000101 01001100000000000000000 in IEEE 754 represents 83.375

in decimal.

(B) 1 10000010 10010100000000000000000 in IEEE 754 represents -12.625

in decimal.

(C)If some values (nonzero) are divided by zero, MIPS will raise an exception.

(D)In bias 15, 01101 represents -2.

ANS : B、D

(A) 83

(C) MIPS don’t check.

Group14

Please explain/fill in the following according to the IEEE 754 standard:

a. Why is there a need for the designation of denormal (subnormal

numbers) in the standard?

b. Why does the value of the mantissa (significand) always ignores the

digit left to the decimal point?

c. Why is there a need for the biased notation (instead of a 2’s

complement representation for signed numbers)?

d. How many different NaN values are there in the single-precision

floating point number standard? (Answer can be presented in exponent

notation)

Ans:

a. To allow a gradual underflow from the least significant (i.e. lowest in

absolute value, ±1.0×2-126) normal number to zero, instead of jumping

straight to zero.

b. Since a binary floating point number, when represented in a scientific

notation, can only start with 1 (values smaller than 1 will be

represented with a lower exponent), such digit is ignored in the

normalized form.

c. It is implemented for the ease of comparing different exponents.

d. There are NaNs in the positive and negative range, and there is a

range of 23 bits in the mantissa (significand), hence 2×(223 - 1) = 224 -

2.

Group 2

Please fill out the table according to steps of 1011/0110 and the following flow

chart. Write down Quotient and Remainder.

Step Remainder Divisor Description

0 0000 1011 0110 Initialization

Quotient: Remainder:

Hint:

To fill the Description, there are some options:

• Shift xxxxxxxxx left/right

• xxxxxxxxx < 0 / > 0

• Restore original value

• Subtract/Add xxxxxxx

• Set the new significant bit to 1/0

 ……

Ans:

0110->2’s complement->1001+1->1010

Step Remainder Divisor Description

0 0000 1011 0110 Initialization

1.1 0001 0110 Shift Remainder left

1.2 1011 0110 Subtract Divisor -> Remainder < 0

1.3b 0010 1100 Restore original value

Shift Remainder left

Set the new significant bit to 0

2.2 1100 1100 Subtract Divisor -> Remainder < 0

2.3b 0101 1000 Restore original value

Shift Remainder left

Set the new significant bit to 0

3.2 1111 1000 Subtract Divisor -> Remainder < 0

3.3b 1011 0000 Restore original value

Shift Remainder left

Set the new significant bit to 0

4.2 0101 0000 Subtract Divisor -> Remainder > 0

4.3a 1010 0001 Shift Remainder left

Set the new significant bit to 1

0101 0001 Shift left half of Remainder right 1 bit

Quotient: 0001 Remainder: 0101

Group4

Which of the following statements are true?

(a) The unsigned multiplier of two 32-bit numbers requires a 32-bit register

for multiplicand and a 32-bit register for product.

(b) Based on 32-bit IEEE 754 standard’s single precision, no other floating

point number is greater than 0x7f800000.

(c) Hi and Lo registers are used in both multiplication and division, and Hi

would store the quotient in division.

(d) If there were only 16 bits for significand field in floating point

representation, it is equivalent to 4 decimal digits of precision.

(e) For 32-bit unsigned division, we only need 32 iterations and shift one

register to get the correct result.

(f) By IEEE-754 single precision floating-point representation, the largest

positive normalized number is +(1 − 2−23) × 2+127.

(g) Exponents with all 1’s are reserved for ±∞ and NaN.

Ans: (b)(d)(e)(g)

(a) In version 1, a 32-bit multiplier requires a 64-bit multipland register and

a 64-bit product register. In version 2, a 32-bit multiplier requires a 32-

bit multipland register and a 64-bit product register.

(b) 0 and 255 are reserved in exponent value. 255 in exponent and 0 in

significand stands for +/- infinity. Hence, 0111 1111 1000 0000 0000

0000 0000 0000 means infinity. In hexadecimal representation is

0x7f800000

(c) Hi stores the remainder.

(d) 16 × 𝑙𝑜𝑔2 ≈ 4 decimal digits of precision.

(e)

(f) The largest positive number= (1 + 1 − 2−23) × 2+127 = (1 −

2−24) × 2128

Group12

True or False:

A. when we use mult $t1, $t2, we will push most significant 32 bits

to lo and least significant 32 bits to hi.

B. In multiply version 2 we will place multiplier to product register’s

right hand and shift right until the multiply end.

C. Divide version 1 and multiply version 1 have same repetition

times.

D. when we use div $t1, $t2, we will push remainder to hi and

quotient to lo, and we can use mflo $t3 and mfhi $t4 to copy the lo and

hi value to register t3 and t4.

E. For 32-bit IEEE 754 floating-point standard, the smallest positive

single precision denormalized number is: 0.0000 0000 0000 0000 0000

0012 x 2 ^ -126.

F. 0.687510 = 0.01112

G. In the IEEE 754 floating-point representation, the precision of

represented numbers is determined by the size of exponent.

H. In the IEEE 754, we use 2’s complement in exponent field.

Ans:

A. F, when we use mult $t1, $t2, we will push most significant 32

bits to hi and least significant 32 bits to lo.

B. T

C. F, Divide version 1 need to do 33 repetitions, and multiply

version1 need to do 32 repetitions.

D. T

E. T

F. F, 0.687510 = 0.10112

G. In the IEEE 754 floating-point representation, the precision of

represented numbers is determined by the size of significand.

H. F, In the IEEE 754, we use bias notation in exponent field .

Group1

Below are some steps for performing a basic floating-point multiplication.

Please order the steps.

a. Normalize the product and check for overflow/underflow when shifting

b. Add the exponents of operands to get the exponent of the product

c. Round the mantissa and renormalize when necessary

d. Multiply the mantissa of operands

e. Set the sign of the product

Ans: bdace

Explanation: Please refer to the slides on page 112 (titled Floating-Point

Multiplication)

Group 7

Half-precision floating-point (FP16) has 1 bit of signed bit, 5 bits of exponent,

and 10 bits of mantissa. The exponent uses bias of 15.

For the following question, calculate the results and represent them in FP16

bit representation:

 1) 13(10)

 2) 1.111(2) * 2^-14 - 1.000(2) * 2^-13

 3) 1024(10) * 512(10)

(hint : 512 = 2^9, 1024 = 2^10)

1) 13 = 0b1101 = 1.101 * 2^3

2) 1.111 * 2^-14 - 1.000 * 2^-13 = -0.0001 * 2^-13 = -0.001 * 2^-14

(denormalized)

3) 1024 * 512 = 2^19 → +Infinity (overflow)

Representing them with FP16 bit representation:

