
1

CS4311
Design and Analysis of

Algorithms

Lecture 7:
Lower Bound of Comparison Sorts



2

•Prove lower bound of any comparison
sorting algorithm
•applies to insertion sort, selection sort,

mergesort, heapsort, quicksort
•does not apply to counting sort, radix

sort, bucket sort
•Based on Decision Tree Model

About this lecture



3

Comparison Sort
•Comparison sort only uses comparisons

between items to gain information about
the relative order of items

•It’s like the elements are stored in boxes,
and we can only pick two boxes at a time
to compare which one is larger

•However, we don’t know their values

…



4

Worst-Case Running Time
Merge sort and heapsort are the “smartest”

comparison sorting algorithms we have
studied so far:

worst-case running time is (n log n)

Question: Do we have an even smarter
algorithm? Say, runs in (n log n) time?

Answer: No! (main theorem in this lecture)



5

Lower Bound
Theorem: Any comparison sorting algorithm

requires (n log n) comparisons to sort
n distinct items in the worst case

Corollary: Any comparison sorting algorithm
runs in (n log n) time in the worst case

Corollary: Merge sort and Heapsort are
(asymptotically) optimal comparison sorts



6

Proof of Lower Bound
The main theorem only counts comparison

operations, so we may assume all other
operations (such as moving items) are for free

Consequently, any comparison sort can be
viewed as performing in the following way:
1. Continuously gather relative ordering

information between items
2. In the end, move items to correct positions

We use the above view in the proof



7

Proof of Lower Bound
Now, consider a particular comparison sort

algorithm C, running on some input A[1..n]

•At the beginning, C will make a decision
to compare some items, say A[i] with A[j]

A[i] : A[j]C’s first decision



8

Proof of Lower Bound
•Suppose A[i] A[j]. C will then make

another decision, say, to compare A[x]
with A[y]

A[i] : A[j]

A[x] : A[y]

>

C’s second decision



9

Proof of Lower Bound

•The process
continues until
there is enough
information to
determine exactly
the sorting order

A[i] : A[j]

A[x] : A[y]

>

<

<

A[p] : A[q]

sorting order determined



10

Proof of Lower Bound
Suppose that the content of A[1..n] is

changed and C is run again on this A[1..n]

Question: Which two items are compared at
the beginning? Why?

Answer: A[i] and A[j]. C has no way to tell
the differences between the current
input and the previous one



11

Proof of Lower Bound
Now, suppose A[i] A[j] in this new A[1..n]

Question: Which two items are compared
next? Why?

Answer: A[x] and A[y]. For similar reason,
C cannot tell the differences between the
current input and the previous one



12

Proof of Lower Bound
Extending this idea further, we can obtain

an important observation:

If the sequence of previous decisions and
the corresponding results are the same,

C will always make the same decision next



13

Proof of Lower Bound
If we consider running C on all different

kinds of inputs, the possible sequences of
decisions can be captured by a tree:

A[i] : A[j]

A[x] : A[y]

>

A[r] : A[s]

<

< > ><

This is called the decision tree of
the algorithm C

result of
decision

decision



14

Properties of Decision Tree

1. Each leaf of a decision tree corresponds
to at most one kind of input (why?)

2. The height of the tree is the maximum #
of comparisons for any kind of input using
the algorithm  worst-case comparisons

Question: Any lower bound on the height?



15

Lower Bound on Height
•We have n! different kinds of inputs (why?)

•Degree of each node is at most 2
•Let h = height of decision tree of C

So, n! · total # leaves · 2h

 h ¸ log (n!) = log n + log (n-1) + …
¸ log n + …+ log (n/2)
¸ (n/2) log (n/2) = (n log n)

We can also use Stirling’s approximation:
n! = 2n (n/e)n (1+(1/n))



16

Proof of Lower Bound
Conclusion:

worst-case # of comparisons in C
= height of decision tree of C
= (n log n)

We have made no special assumptions on C
except it is a comparison sort

 Lower bound is true for any comparison
sort (so, the proof completes)


