CS4311
 Design and Analysis of Algorithms

Tutorial for Fun:
Deriving Catalan Number Formula

Generating Function

- Let $S=s_{0}, s_{1}, s_{2}, \ldots$ be a series of numbers we are interested
- Then the function

$$
F(x)=\sum s_{i} x^{i}=s_{0}+s_{1} x+s_{2} x^{2}+s_{3} x^{3}+\ldots
$$

is called a generating function of S

Generating Function

Example 1:

$$
F(x)=\sum i x^{i}=x+2 x^{2}+3 x^{3}+\ldots
$$

is the generating function of $0,1,2, \ldots$
Example 2:

$$
F(x)=1+4 x+6 x^{2}+4 x^{3}+x^{4}
$$

is the generating function of

$$
\binom{4}{0},\binom{4}{1},\binom{4}{2},\binom{4}{3},\binom{4}{4}
$$

Closed Form

- Sometimes, generating function can be expressed in the closed form :

Example 1:

$$
F(x)=\sum x^{i}=1+x+x^{2}+x^{3}+\ldots
$$

has a closed form $1 /(1-x)$

Why? Because $(1-x)\left(1+x+x^{2}+x^{3}+\ldots\right)=1$

Closed Form

Example 2:

$$
\begin{aligned}
& F(x)=\sum C(n, i) x^{i} \\
&=1+n x+C(n, 2) x^{2}+\ldots n x^{n-1}+x^{n} \\
& \text { has a closed form }(1+x)^{n}
\end{aligned}
$$

Example 3: How about the closed form of

$$
F(x)=\sum i x^{i}=x+2 x^{2}+3 x^{3}+\ldots ?
$$

Closed Form

- Generating function is very useful in (I) solving combinatorial problems, and (II) solving recurrences
- Usually, the closed form is important because it can simplify the notation a lot!
- We will see how generating function is used to get Catalan number formula

Catalan Number

- Let us define the $\mathrm{n}^{\text {th }}$ Catalan number
$c_{n}=\#$ binary trees with n internal nodes
= \# binary trees with $n+1$ leaves
- What is $c_{0}, c_{1}, c_{2}, c_{3}$?

$$
\begin{aligned}
& c_{0}=1 \\
& c_{1}=1 \\
& c_{2}=2
\end{aligned}
$$

Catalan Number

- Note: an n-node tree can be formed by:
(i) choosing the $\mathrm{k}^{\text {th }}$ node to be its root
(ii) arrange the left tree in any order
(iii) arrange the right tree in any order So, there are $c_{k-1} * c_{n-k}$ choices

$$
\begin{aligned}
\Rightarrow c_{n} & =c_{0} c_{n-1}+c_{1} c_{n-2}+c_{2} c_{n-3}+\ldots+c_{n-1} c_{0} \\
& =\sum_{k=1 \text { ton }} c_{k-1} c_{n-k}
\end{aligned}
$$

Catalan Number

So, we have:
c_{0}
$=1$
$c_{1}=c_{0} c_{0} x$
:

$$
c_{n-1} x^{n-1}=\sum_{k=1 \text { to } n-1} c_{k-1} c_{n-k} x^{n-1}
$$

$$
c_{n} x^{n}
$$

$$
=\sum_{k=1 \text { to } n \quad c_{k-1} c_{n-k} x^{n}}
$$

Catalan Number

Let $F(x)=$ generating function of Catalan \#
 $$
=c_{0}+c_{1} x+\ldots+c_{n} x^{n}+\ldots
$$
 = sum of LHS

However,

> sum of RHS

$$
\begin{aligned}
&=1+x[c_{0} c_{0}+\left(c_{0} c_{1}+c_{1} c_{0}\right) x+\ldots \\
&\left.\quad+\left(c_{0} c_{n-1}+\ldots+c_{n-1} c_{0}\right) x^{n-1}+\ldots\right] \\
&=1+x(F(x))^{2}
\end{aligned}
$$

Catalan Number

Thus,

$$
F(x)=1+x(F(x))^{2}
$$

Or,

$$
x(F(x))^{2}-F(x)+1=0
$$

Hence, we get a closed form of $F(x)$:

$$
\begin{aligned}
F(x) & =(1 \pm \sqrt{1-4 x}) /(2 x) \\
& =(1-\sqrt{1-4 x}) /(2 x) \quad \text { (why?) }
\end{aligned}
$$

Catalan Number

$$
\text { Let } C\left(\frac{1}{2}, k\right)=\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) \ldots\left(\frac{1}{2}-k+1\right) / k!
$$

Then, by binomial expansion, (or Taylor)

$$
(1-4 x)^{1 / 2}
$$

$$
=1+\frac{1}{2}(-4 x)+\ldots+C\left(\frac{1}{2}, n\right)(-4 x)^{n}+\ldots
$$

$$
=1-2 x-\ldots-4^{n} \frac{1}{2}\left(1-\frac{1}{2}\right)\left(2-\frac{1}{2}\right) \ldots\left(n-1-\frac{1}{2}\right) x^{n} / n!
$$

- ...

Simplifying Terms

We claim that:

$$
\begin{aligned}
& 4^{n} \frac{1}{2}\left(1-\frac{1}{2}\right)\left(2-\frac{1}{2}\right) \ldots\left(n-1-\frac{1}{2}\right) / n! \\
&=C(2 n, n) /(2 n-1) \\
& \Rightarrow \quad(1-4 x)^{1 / 2}=1-2 x-\ldots-C(2 n, n) x^{n} /(2 n-1)-\ldots \\
& \Rightarrow \quad F(x)=1-\left((1-4 x)^{1 / 2}\right) /(2 x) \\
&=1+\ldots+C(2 n, n) x^{n-1} /(2(2 n-1))+\ldots
\end{aligned}
$$

Simplifying Terms

Proof of claim:

$$
\begin{aligned}
& 4^{n} \frac{1}{2}\left(1-\frac{1}{2}\right)\left(2-\frac{1}{2}\right) \ldots\left(n-1-\frac{1}{2}\right) / n! \\
= & 2^{n}(1)(1)(3)(5) \ldots(2 n-3) / n! \\
= & 2^{n} n!(1)(3)(5) \ldots(2 n-3)(2 n-1) /(n!n!(2 n-1)) \\
= & (2)(4)(6) \ldots(2 n)(1)(3)(5) \ldots(2 n-1) /(n!n!(2 n-1)) \\
= & (2 n)!/(n!n!(2 n-1))
\end{aligned}
$$

Catalan Number

Recall: $n^{\text {th }}$ Catalan number c_{n} $=$ coefficient of x^{n} in $F(x)$
$\rightarrow \quad c_{n}=C(2 n+2, n+1) /(2(2 n+1))$
$=(2 n+2)!/((n+1)!(n+1)!2(2 n+1))$
$=(2 n+2)!/(n!(n+1)!(2 n+2)(2 n+1))$
$=(2 n)!/(n!(n+1)!)$
$=(2 n)!/(n!n!(n+1))$
$=C(2 n, n) /(n+1)$

