CS4311 Design and Analysis of Algorithms

Tutorial for Fun: Deriving Catalan Number Formula

1

Generating Function

- Let $S = s_0$, s_1 , s_2 , ... be a series of numbers we are interested
- Then the function

 $F(x) = \sum s_i x^i = s_0 + s_1 x + s_2 x^2 + s_3 x^3 + \dots$ is called a generating function of S

Generating Function

Example 1: $F(x) = \sum i x^{i} = x + 2x^{2} + 3x^{3} + ...$ is the generating function of 0, 1, 2, ... Example 2: $F(x) = 1 + 4x + 6x^2 + 4x^3 + x^4$ is the generating function of $\left(\begin{array}{c}4\\0\end{array}\right), \left(\begin{array}{c}4\\1\end{array}\right), \left(\begin{array}{c}4\\2\end{array}\right), \left(\begin{array}{c}4\\3\end{array}\right), \left(\begin{array}{c}4\\4\end{array}\right)$

Closed Form

 Sometimes, generating function can be expressed in the closed form :

Example 1: $F(x) = \sum x^{i} = 1 + x + x^{2} + x^{3} + ...$ has a closed form 1 / (1-x)

Why? Because $(1-x)(1 + x + x^2 + x^3 + ...) = 1$

Closed Form

Example 2:

$$F(x) = \sum C(n,i) x^{i}$$

$$= 1 + nx + C(n,2)x^{2} + ... nx^{n-1} + x^{n}$$
has a closed form $(1+x)^{n}$

Example 3: How about the closed form of $F(x) = \sum i x^i = x + 2x^2 + 3x^3 + ...$?

Closed Form

- Generating function is very useful in

 (I) solving combinatorial problems, and
 (II) solving recurrences
- Usually, the closed form is important because it can simplify the notation a lot!
- We will see how generating function is used to get Catalan number formula

- Let us define the nth Catalan number
 - c_n = # binary trees with n internal nodes
 = # binary trees with n+1 leaves
- What is c₀, c₁, c₂, c₃?

• Note: an n-node tree can be formed by: (i) choosing the k^{th} node to be its root (ii) arrange the left tree in any order (iii) arrange the right tree in any order So, there are $c_{k-1} * c_{n-k}$ choices

$$c_n = c_0 c_{n-1} + c_1 c_{n-2} + c_2 c_{n-3} + \dots + c_{n-1} c_0$$
$$= \sum_{k=1 \text{ to } n} c_{k-1} c_{n-k}$$

So, we have:		
c ₀	= 1	
C ₁	$= c_0 c_0 \times$	
	• •	
$c_{n-1} \times^{n-1}$	= $\sum_{k=1 \text{ to } n-1} c_{k-1} c_{n-k} x^{n-1}$	
c _n x ⁿ	$= \sum_{k=1 \text{ to } n} c_{k-1} c_{n-k} x^n$	
	•	

Let F(x) = generating function of Catalan # $= C_0 + C_1 X + ... + C_n X^n + ...$ = sum of LHS However, sum of RHS = $1 + x [c_0 c_0 + (c_0 c_1 + c_1 c_0)x + ...$ + $(C_0C_{n-1} + ... + C_{n-1}C_0)X^{n-1} + ...]$ $= 1 + x (F(x))^2$

Thus,

- $F(x) = 1 + x (F(x))^{2}$ Or, $x (F(x))^{2} - F(x) + 1 = 0$
- Hence, we get a closed form of F(x): $F(x) = (1 \pm \sqrt{1 - 4x}) / (2x)$ $= (1 - \sqrt{1 - 4x}) / (2x)$ (why?)

Let $C(\frac{1}{2},k) = \frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)...(\frac{1}{2}-k+1) / k!$ Then, by binomial expansion, (or Taylor) $(1 - 4x)^{1/2}$

$$= 1 + \frac{1}{2}(-4x) + \dots + C(\frac{1}{2},n)(-4x)^{n} + \dots$$

 $= 1 - 2x - ... - 4^{n} \frac{1}{2} (1 - \frac{1}{2}) (2 - \frac{1}{2}) ... (n - 1 - \frac{1}{2}) x^{n} / n!$

Simplifying Terms

We claim that:

$$\frac{4^{n}}{2}\left(1-\frac{1}{2}\right)\left(2-\frac{1}{2}\right)...\left(n-1-\frac{1}{2}\right) / n!$$

= C(2n, n) / (2n-1)

→
$$(1-4x)^{1/2} = 1 - 2x - ... - C(2n,n)x^n/(2n-1) - ...$$

→ $F(x) = 1 - ((1-4x)^{1/2}) / (2x)$ = $1 + ... + C(2n,n)x^{n-1}/(2(2n-1)) + ...$

Simplifying Terms

Proof of claim:

$$4^{n} \frac{1}{2} (1 - \frac{1}{2}) (2 - \frac{1}{2}) ... (n - 1 - \frac{1}{2}) / n!$$

- $= 2^{n}(1)(1)(3)(5)...(2n-3) / n!$
- $= 2^{n} n! (1)(3)(5)...(2n-3)(2n-1)/(n! n!(2n-1))$
- = (2)(4)(6)...(2n)(1)(3)(5)...(2n-1)/(n! n!(2n-1))
- = (2n)! / (n! n! (2n-1))

Recall: n^{th} Catalan number c_n = coefficient of x^n in F(x)

 \rightarrow

 $c_n = C(2n+2,n+1) / (2(2n+1))$

- = (2n+2)! / ((n+1)! (n+1)! 2(2n+1))
- = (2n+2)! / (n! (n+1)! (2n+2)(2n+1))
- = (2n)! / (n! (n+1)!)
- = (2n)! / (n! n! (n+1))
- = C(2n,n) / (n+1)