Hash table

Speaker : MARK

Outline

Introduction

- Direct addressing table
- Hash table

Hash function

- Division
- Mid-square
- Folding

Collision & Overflow handing

- Open addressing

Introduction

 Many applications require a dynamic set S to supports the following dictionary operations:

Search(k): check if k is in S

Insert(*k*): insert *k* into *S*

 \otimes **Delete**(*k*): delete *k* from *S*

 Hash table: an effective data structure for implementing dictionaries

Definitions

- \bullet **U** : a set of universe keys
- K: a dynamic set of actual keys
- *T* : the table denoted by *T*[0 ∼ m-1], *in* which each position, or slot, corresponds to a key in the universe *U*.

Direct addressing table

• Search time = Insert time = Delete time = O(1)

Direct addressing table

- The difficulty with direct addressing is obvious:
 The table *T* size = O(|U|)
- If $|K| \ll |U|$, then use too much spaces.
- Time is money ! Space is money, too !?

What is hashing ?

- ♦ Hashing has following advantages:
 - Use hashing to search, data need not be sorted
 - Without collision & overflow, search only takes
 O(1) time. Data size is not concerned
 - Security. If you do not know the hash function, you cannot get data

Hash table

- With direct addressing ,
 - \otimes an element with key k is stored in slot k
- $\diamond\,$ With hashing ,
 - \otimes this element is stored in slot h(k)

Hash function

A good hash function satisfies (approximately)
 the assumption of *simple uniform hashing* :

Each key is equally likely to hash to *any of the m slots*, independently of where any other key has hashed to.

Hash function

♦ For example, if the keys *k* are known to be *random real numbers* independently and uniformly distributed in the range 0 ≤ k < 1, the hash function

 $h(k) = \lfloor km \rfloor$

satisfies the condition of simple uniform hashing.

Hash function

- Interpreting keys as natural numbers
- Most hash functions assume that the universe of keys is the set N = {0, 1, 2, ...} of natural numbers.
- Ex. Key 'pt' n = 112 & t = 116
 - p = 112 & t = 116 in ASCII table

'pt' = $(112 \cdot 128) + 116 = 14452$

(1) Division

- Mapping a key k into one of m slots by taking the remainder of k divided by m
- $h(k) = k \mod m$
- Ex. m = 12, k = 100, then h(k) = 4
- Prime number m may be good choice !

(2) Mid-square

- Mapping a key k into one of m slots by get the middle some digits from value k²
- h(k) = k^2 get middle (log m) digits

(3) Folding

- Divide k into some sections, besides the last section, have same length. Then add these sections together.

 - b. folding at the boundaries
- $H(k) = \sum$ (section divided from k) by a or b

(3) Folding

♦ Ex, k = 12320324111220, section length = 3

P1	21 P2				P3					P4				P5			
1	2	3		2	0	3		2	4	1		1	1	2		2	0

P1 123
P2 302
P3 241
P4 211
P5 <u>20</u>
897
folding at the boundaries

Collision & Overflow handing

(1) Chaining

 In chaining, we put all the elements that hash to the same slot in a linked list

- Worst-case insert time = O(1)
 insert into the beginning of each link list
- ♦ Worst-case search time = ⊖(n)
 ♦ Every key mapping to the same slot
 Ex. h(1) = h(2) = h(3) = ... = h(n) = x
 then search key '1'

 For j = 0, 1, ..., m-1, let us denote the length of the list T[j] by n_i, so that

 $n = n_0 + n_1 + \ldots + n_{m-1}$

- Average search time = $\Theta(1 + \alpha)$

- Unsuccessful search time = $\Theta(1 + \alpha)$
- The expected time to search unsuccessfully for a key k is the expected time to search to the end of list T[h(k)], which has expected length
 E[n_{h(k)}] = α.

- Successful search time = $\Theta(1 + \alpha)$
- The situation for a successful search is slightly different, since *each list is not equally likely to be searched*.
- Instead, the probability that a list is searched is proportional to the number of elements it contains.

- ♦ For keys k_i and k_j, we define *indicator random variable* X_{ij} = I{h(k_i) = h(k_j)}
- Under the assumption of simple uniform hashing, we have

 $Pr\{h(k_i) = h(k_j)\} = 1/m$, and $E[X_{ij}] = 1/m$

The expected number of elements examined in a *successful search* is :

$$E\left[\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}X_{ij}\right)\right]$$

$$=\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}E[X_{ij}]\right) \text{ (by linearity of expectation)}$$

$$=\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}\frac{1}{m}\right)$$

$$=1+\frac{1}{nm}\sum_{i=1}^{n}(n-i)$$

$$=1+\frac{1}{nm}\left(\sum_{i=1}^{n}n-\sum_{i=1}^{n}i\right)$$

$$=1+\frac{1}{nm}\left(n^{2}-\frac{n(n+1)}{2}\right) \text{ (by equation (A.1))}$$

$$=1+\frac{n-1}{2m}$$

$$=1+\frac{\alpha}{2}-\frac{\alpha}{2n}.$$

- $\Theta(1 + \alpha)$ means ?
- If the number of hash-table slots is at least proportional to the number of elements in the table, we have

n = O(m) and, $\alpha = n/m = O(m)/m = O(1)$.

Thus, searching takes constant time on average.

(2) Open addressing

- In open addressing, all elements are stored in the hash table itself.
- That is, each table slot contains either an element of the dynamic set or NIL.
- The hash table can "fill up"

=> no further insertions can be made;

♦ load factor $\alpha = n/m \le 1$.

(2) Open addressing

- The assumption of *uniform hashing*:
 we assume that each key is equally likely to have any of the *m! permutations of* < 0, 1, m, 1> as its probe sequence
 - <0, 1, ..., m-1> as its probe sequence.
- * Linear probing, Quadratic probing, and Double hashing are commonly used to compute the probe sequences required for open addressing.

(2.1) Linear Probing

$(h(k, i) = (h'(k) + i) \mod m$,

h': auxiliary hash function

(2.2) Quadratic Probing

- * $h(k, i) = (h'(k) + c_1i + c_2i^2) \mod m$, h': auxiliary hash function $c_1, c_2 \neq 0$: auxiliary constants i: 0, 1, ..., m-1
- This method works much better than linear probing, but to make *full use* of the hash table,
- \diamond the values of c_1 , c_2 , and m are constrained.

(2.3) Double hashing

- * $h(k, i) = (h_1(k) + ih_2(k)) \mod m$, $h_1, h_2: auxiliary hash function$ i: 0, 1, ..., m-1
- Double hashing is one of the best methods available for open addressing
- because the permutations produced have *many* of the characteristics of randomly chosen permutations.

(2) Open addressing

- These techniques all guarantee that
 <h(k, 0), h(k, 1), ..., h(k, m-1) > is a
 permutation of <0, 1, ..., m-1> for each key k
- None of these techniques *fulfills* the assumption of uniform hashing.
- Double hashing has the greatest number of probe sequences and, as one might expect, seems to give the best results.

Given an open-address hash table with load factor $\alpha = n/m < 1$, the expected number of probes in an **unsuccessful search** is at most $1/(1-\alpha)$, assuming uniform hashing.

- Define the random variable *X* to be the number of probes made in an unsuccessful search.
- Define the event A_i, for i = 1, 2, ..., to be the event that there is an ith probe and it is to an occupied slot.

- Then the event $\{X \ge i\} = A_1 \cap A_2 \cap \cdots \cap A_{i-1}$.
- ♦ We will bound $Pr{X \ge i}$ by bounding

$$\Pr \{A_1 \cap A_2 \cap \cdots \cap A_{i-1}\} = \Pr\{A_1\} \cdot \Pr\{A_2 | A_1\} \cdot \Pr\{A_3 | A_1 \cap A_2\} \cdot \Pr\{A_{i-1} | A_1 \cap A_2 \cap \cdots \cap A_{i-2}\}$$

$$\Pr\{X \ge i\} = \frac{n}{m} \cdot \frac{n-1}{m-1} \cdot \frac{n-2}{m-2} \cdots \frac{n-i+2}{m-i+2}$$

$$\leq \left(\frac{n}{m}\right)^{i-1}$$

$$= \alpha^{i-1}.$$

$$E[X] = \sum_{i=1}^{\infty} \Pr\{X \ge$$
$$\leq \sum_{i=1}^{\infty} \alpha^{i-1}$$
$$= \sum_{i=0}^{\infty} \alpha^{i}$$
$$= \frac{1}{1-\alpha}.$$

≥ i) ◆ If α is a constant, an unsuccessful search runs in O(1) time.

- Ex. average number of probes
 in an *unsuccessful search* :

Inserting an element into an open-address hash table with load factor α requires at most $1/(1 - \alpha)$ probes on *average*, assuming uniform hashing.

- Inserting a key requires an *unsuccessful search* followed by placement of the key in the first empty slot found.
- Thus, the expected number of probes is at most $1/(1 \alpha)$.

Given an open-address hash table with load factor $\alpha < 1$, the expected number of probes in a *successful search* is at most $\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$, assuming uniform hashing and assuming that each key in the table is equally likely to be searched for.

- ◊ if k was the (i + 1)st key inserted into the hash table, the expected number of probes made in a search for k is at most 1/(1 i/m) = m/(m-i).
- Averaging over all n keys in the hash table gives us the average number of probes in a successful search: $\frac{1}{n} \sum_{i=0}^{n-1} \frac{m}{m-i} = \frac{m}{n} \sum_{i=0}^{n-1} \frac{1}{m-i}$ $= \frac{1}{\alpha} (H_m - H_{m-n}),$

$$\frac{1}{\alpha}(H_m - H_{m-n}) = \frac{1}{\alpha} \sum_{k=m-n+1}^m 1/k$$

$$\leq \frac{1}{\alpha} \int_{m-n}^m (1/x) \, dx \quad \text{(by inequality (A.12))}$$

$$= \frac{1}{\alpha} \ln \frac{m}{m-n}$$

$$= \frac{1}{\alpha} \ln \frac{1}{1-\alpha}$$

- Ex. the expected number of probes in a *successful* search is :
 - ♦ If the hash table is **half full :** less than 1.387
 - ♦ If the hash table is 90% full : less than 2.559