
Hash table

Speaker : MARK

2008/4/10 L.O.A.D.S. 1

Outline
 Introduction

 Direct addressing table
 Hash table

 Hash function
 Division
 Mid-square
 Folding

 Collision & Overflow handing
 Chaining
 Open addressing

2008/4/10 L.O.A.D.S. 2

Introduction

 Many applications require a dynamic set S to
supports the following dictionary operations:
 Search(k): check if k is in S
 Insert(k): insert k into S
 Delete(k): delete k from S

 Hash table: an effective data structure for
implementing dictionaries

2008/4/10 L.O.A.D.S. 3

Definitions

 U : a set of universe keys

 K : a dynamic set of actual keys
 Like an application needs in which each element has a

key drawn from the universe U = {0, 1, ..., m-1}

 T : the table denoted by T[0 ~ m-1],
 in which each position, or slot, corresponds to a

key in the universe U .

2008/4/10 L.O.A.D.S. 4

Direct addressing table

 Ex.

 Search time = Insert time = Delete time = O(1)

2008/4/10 L.O.A.D.S. 5

Key = 2 Name = John … … …

Slot

Direct addressing table

 The difficulty with direct addressing is obvious:
 The table T size = O(|U|)
 If |K| << |U| , then use too much spaces.

 Time is money ! Space is money, too !?

2008/4/10 L.O.A.D.S. 6

What is hashing ?

 Hashing has following advantages:
 Use hashing to search, data need not be sorted
 Without collision & overflow, search only takes

O(1) time. Data size is not concerned
 Security. If you do not know the hash function,

you cannot get data

2008/4/10 L.O.A.D.S. 7

Hash table
 With direct addressing ,

 an element with key k is stored in slot k

 With hashing ,
 this element is stored in slot h(k)

2008/4/10 L.O.A.D.S. 8

Hash function

 A good hash function satisfies (approximately)
the assumption of simple uniform hashing :

Each key is equally likely to hash to any of the
m slots, independently of where any other key
has hashed to.

2008/4/10 L.O.A.D.S. 9

Hash function

 For example, if the keys k are known to be
random real numbers independently and
uniformly distributed in the range 0 ≤k < 1,
the hash function

h(k) = b km c

satisfies the condition of simple uniform
hashing.

2008/4/10 L.O.A.D.S. 10

Hash function

 Interpreting keys as natural numbers

 Most hash functions assume that the universe
of keys is the set N = {0, 1, 2, ...} of natural
numbers.

 Ex. Key ‘pt’
 p = 112 & t = 116 in ASCII table
 as a radix-128 integer,
‘pt’= (112·128) + 116 = 14452

2008/4/10 L.O.A.D.S. 11

(1) Division

 Mapping a key k into one of m slots by taking
the remainder of k divided by m

 h(k) = k mod m

 Ex. m = 12, k = 100, then h(k) = 4

 Prime number m may be good choice !

2008/4/10 L.O.A.D.S. 12

(2) Mid-square

 Mapping a key k into one of m slots by get the
middle some digits from value k2

 h(k) = k2 get middle (log m) digits

 Ex. m = 10000, k = 113586, log m = 4
h(k) = 1135862 get middle 4 digits

= 12901779369 get middle 4 digits
= 1779

2008/4/10 L.O.A.D.S. 13

(3) Folding

 Divide k into some sections, besides the last
section, have same length . Then add these
sections together.
 a. shift folding
 b. folding at the boundaries

 H(k) = ∑(section divided from k) by a or b

2008/4/10 L.O.A.D.S. 14

(3) Folding

 Ex, k = 12320324111220, section length = 3

2008/4/10 L.O.A.D.S. 15

Collision & Overflow handing

2008/4/10 L.O.A.D.S. 16

Collision!

(1) Chaining

 In chaining, we put all the elements that hash
to the same slot in a linked list

2008/4/10 L.O.A.D.S. 17

(1) Chaining analysis

 Worst-case insert time = O(1)
 insert into the beginning of each link list

 Worst-case search time = Θ(n)
 Every key mapping to the same slot

Ex. h(1) = h(2) = h(3) = … = h(n) = x
then search key ‘1’

2008/4/10 L.O.A.D.S. 18

(1) Chaining analysis

 For j = 0, 1, ..., m-1, let us denote the length of
the list T[j] by nj , so that

n = n0 + n1 + … + nm-1

 the average value of nj is E[nj] = α = n/m.

 Average search time = Θ(1 + α)

2008/4/10 L.O.A.D.S. 19

(1) Chaining analysis

 Unsuccessful search time = Θ(1 + α)

 The expected time to search unsuccessfully for a
key k is the expected time to search to the end of
list T[h(k)], which has expected length
E[nh(k)] = α.

2008/4/10 L.O.A.D.S. 20

(1) Chaining analysis

 Successful search time = Θ(1 + α)
 The situation for a successful search is slightly

different, since each list is not equally likely to be
searched.

 Instead, the probability that a list is searched is
proportional to the number of elements it contains.

2008/4/10 L.O.A.D.S. 21

(1) Chaining analysis

 For keys ki and kj , we define
indicator random variable Xij = I{h(ki) = h(kj)}

 Under the assumption of simple uniform
hashing, we have
Pr{h(ki) = h(kj)} = 1/m, and E[Xij] = 1/m

 The expected number of elements examined in
a successful search is :

2008/4/10 L.O.A.D.S. 22

(1) Chaining analysis

2008/4/10 L.O.A.D.S. 23

Θ(2 + α/2 - α/2n) =
Θ(1 + α)

(1) Chaining analysis

 Θ(1 + α) means ?
 If the number of hash-table slots is at least

proportional to the number of elements in the
table, we have
n = O(m) and, α = n/m = O(m)/m = O(1).

 Thus, searching takes constant time on
average.

2008/4/10 L.O.A.D.S. 24

(2) Open addressing

 In open addressing, all elements are stored in
the hash table itself.

 That is, each table slot contains either an
element of the dynamic set or NIL.

 The hash table can "fill up"
=> no further insertions can be made;

 load factor α = n/m ≤1.

2008/4/10 L.O.A.D.S. 25

(2) Open addressing

 The assumption of uniform hashing :
we assume that each key is equally likely to
have any of the m! permutations of
<0, 1, ..., m–1> as its probe sequence.

 Linear probing, Quadratic probing, and Double
hashing are commonly used to compute the probe
sequences required for open addressing.

2008/4/10 L.O.A.D.S. 26

(2.1) Linear Probing

 h(k, i) = (h’(k) + i) mod m ,
h’: auxiliary hash function
i : 0, 1, ... , m-1

2008/4/10 L.O.A.D.S. 27

(2.2) Quadratic Probing

 h(k, i) = (h’(k) + c1i + c2i2) mod m ,
h’: auxiliary hash function
c1, c2 ≠ 0 : auxiliary constants
i : 0, 1, ... , m-1

 This method works much better than linear
probing, but to make full use of the hash table,

 the values of c1, c2, and m are constrained.

2008/4/10 L.O.A.D.S. 28

(2.3) Double hashing

 h(k, i) = (h1(k) + ih2(k)) mod m ,
h1, h2 : auxiliary hash function
i : 0, 1, ... , m-1

 Double hashing is one of the best methods
available for open addressing

 because the permutations produced have many
of the characteristics of randomly chosen
permutations.

2008/4/10 L.O.A.D.S. 29

(2) Open addressing

 These techniques all guarantee that
<h(k, 0), h(k, 1), ... , h(k, m-1) > is a
permutation of < 0, 1, ..., m–1> for each key k

 None of these techniques fulfills the assumption
of uniform hashing.

 Double hashing has the greatest number of
probe sequences and, as one might expect,
seems to give the best results.

2008/4/10 L.O.A.D.S. 30

Given an open-address hash table with load
factor α = n/m < 1, the expected number of
probes in an unsuccessful search is at most
1/(1-α) , assuming uniform hashing.

 Define the random variable X to be the number of
probes made in an unsuccessful search.

 Define the event Ai , for i = 1, 2, ..., to be the
event that there is an ith probe and it is to an
occupied slot.

(2) Open addressing analysis

2008/4/10 L.O.A.D.S. 31

(2) Open addressing analysis

 Then the event {X ≥i} = A1∩A2∩···∩Ai-1 .
 We will bound Pr{X ≥i} by bounding

Pr {A1∩A2∩···∩Ai-1} = Pr{A1} · Pr{A2|A1} ·
Pr{A3|A1∩A2} · Pr{Ai-1|A1∩A2∩···∩Ai-2}

2008/4/10 L.O.A.D.S. 32

(2) Open addressing analysis

 If α is a constant, an
unsuccessful search runs in
O(1) time.

 Ex. average number of probes
in an unsuccessful search :
 If the hash table is half full :

at most 1/(1 - 0.5) = 2
 If the hash table is 90% full :

at most 1/(1 - 0.9) = 10

2008/4/10 L.O.A.D.S. 33

(2) Open addressing analysis

Inserting an element into an open-address
hash table with load factor α requires at most
1/(1 - α) probes on average, assuming
uniform hashing.

 Inserting a key requires an unsuccessful search
followed by placement of the key in the first
empty slot found.

 Thus, the expected number of probes is at most
1/(1 - α).

2008/4/10 L.O.A.D.S. 34

(2) Open addressing analysis

Given an open-address hash table with load
factor α < 1, the expected number of probes
in a successful search is at most
assuming uniform hashing and assuming that
each key in the table is equally likely to be
searched for.

2008/4/10 L.O.A.D.S. 35

(2) Open addressing analysis

 if k was the (i + 1)st key inserted into the hash
table, the expected number of probes made in a
search for k is at most 1/(1 - i/m) = m/(m-i).

 Averaging over all n keys in the hash table gives
us the average number of probes in a successful
search:

2008/4/10 L.O.A.D.S. 36

(2) Open addressing analysis

 Ex. the expected number of probes in a successful
search is :
 If the hash table is half full : less than 1.387
 If the hash table is 90% full : less than 2.559

2008/4/10 L.O.A.D.S. 37

