Hash table

Speaker : MARK

Outline

- Introduction
- Direct addressing table
- Hash table
- Hash function
- Division
- Mid-square
- Folding
- Collision \& Overflow handing
- Chaining
- Open addressing

Introduction

- Many applications require a dynamic set S to supports the following dictionary operations:
$-\operatorname{Search}(k)$: check if k is in S
$-\operatorname{Insert}(k)$: insert k into S
\diamond Delete (k) : delete k from S
- Hash table: an effective data structure for implementing dictionaries

Definitions

- \boldsymbol{U} : a set of universe keys
- \boldsymbol{K} : a dynamic set of actual keys
- Like an application needs in which each element has a key drawn from the universe $U=\{0,1, \ldots, m-1\}$
- \boldsymbol{T} : the table denoted by $T[0 \sim \mathrm{~m}-1]$,
\otimes in which each position, or slot, corresponds to a key in the universe U.

Direct addressing table

- Ex. | Key $=2$ | Name $=$ John | \ldots | \ldots | \ldots |
| :--- | :--- | :--- | :--- | :--- |

- Search time $=$ Insert time $=$ Delete time $=O(1)$

Direct addressing table

- The difficulty with direct addressing is obvious:
- The table T size $=\mathrm{O}(|\mathrm{U}|)$
\otimes If $|K| \ll|U|$, then use too much spaces.
- Time is money! Space is money, too !?

What is hashing ?

- Hashing has following advantages:
- Use hashing to search, data need not be sorted
- Without collision \& overflow, search only takes $\mathrm{O}(1)$ time. Data size is not concerned
- Security. If you do not know the hash function, you cannot get data

Hash table

- With direct addressing ,
- an element with key k is stored in slot k
- With hashing ,
- this element is stored in slot $h(k)$

Hash function

- A good hash function satisfies (approximately) the assumption of simple uniform hashing :

Each key is equally likely to hash to any of the m slots, independently of where any other key has hashed to.

Hash function

- For example, if the keys \boldsymbol{k} are known to be random real numbers independently and uniformly distributed in the range $0 \leq k<1$, the hash function

$$
\mathrm{h}(\mathrm{k})=\lfloor\mathrm{km}\rfloor
$$

satisfies the condition of simple uniform hashing.

Hash function

- Interpreting keys as natural numbers
- Most hash functions assume that the universe of keys is the set $\mathrm{N}=\{0,1,2, \ldots\}$ of natural numbers.
${ }^{-}$Ex. Key 'pt'
- $\mathrm{p}=112 \& \mathrm{t}=116$ in ASCII table
- as a radix-128 integer,

$$
' \mathrm{ft} \mathrm{t}^{\prime}=(112 \cdot 128)+116=14452
$$

(1) Division

- Mapping a key k into one of m slots by taking the remainder of k divided by m
- $\mathrm{h}(\mathrm{k})=\mathrm{k} \bmod \mathrm{m}$
- Ex. $\mathrm{m}=12, \mathrm{k}=100$, then $\mathrm{h}(\mathrm{k})=4$
- Prime number m may be good choice !

(2) Mid-square

- Mapping a key k into one of m slots by get the middle some digits from value k^{2}
- $h(k)=k^{2}$ get middle ($\log m$) digits
- Ex. $\mathrm{m}=10000, \mathrm{k}=113586$, $\log \mathrm{m}=4$

$$
\begin{array}{rlrl}
\mathrm{h}(\mathrm{k}) & =113586^{2} & \text { get middle } 4 \text { digits } \\
& =12901779369 & & \text { get middle } 4 \text { digits } \\
& =1779 &
\end{array}
$$

(3) Folding

- Divide k into some sections, besides the last section, have same length . Then add these sections together.
\otimes a. shift folding
b. folding at the boundaries
- $\mathrm{H}(\mathrm{k})=\sum$ (section divided from k) by a or b

(3) Folding

- Ex, $\mathrm{k}=12320324111220$, section length $=3$

P			P2				P3				P4				P5		
	2	,	2	0	3		2	4		1	1	1		2		2	0

P1	123
P2	203
P3	241
P4	112
P5	20
	879

shift folding

P1	123
P2	302
P3	241
P4	211
P5	20
	897

folding at the boundaries

Collision \& Overflow handing

(1) Chaining

- In chaining, we put all the elements that hash to the same slot in a linked list

(1) Chaining analysis

- Worst-case insert time $=\mathrm{O}(1)$
\otimes insert into the beginning of each link list
- Worst-case search time $=\Theta$ (n)
\bullet Every key mapping to the same slot Ex. $\mathrm{h}(1)=\mathrm{h}(2)=\mathrm{h}(3)=\ldots=\mathrm{h}(\mathrm{n})=\mathrm{x}$ then search key ' 1 '

(1) Chaining analysis

- For $\mathrm{j}=0,1, \ldots, \mathrm{~m}-1$, let us denote the length of the list $T[j]$ by n_{j}, so that

$$
n=n_{0}+n_{1}+\ldots+n_{m-1}
$$

- the average value of n_{j} is $E\left[n_{j}\right]=\alpha=n / m$.
- Average search time $=\Theta(1+\alpha)$

(1) Chaining analysis

- Unsuccessful search time $=\Theta(1+\alpha)$
- The expected time to search unsuccessfully for a key k is the expected time to search to the end of list $T[h(k)]$, which has expected length

$$
E\left[n_{h(k)}\right]=\alpha .
$$

(1) Chaining analysis

- Successful search time $=\Theta(1+\alpha)$
- The situation for a successful search is slightly different, since each list is not equally likely to be searched.
- Instead, the probability that a list is searched is proportional to the number of elements it contains.

(1) Chaining analysis

\bullet For keys k_{i} and k_{j}, we define indicator random variable $\boldsymbol{X}_{i j}=\mathrm{I}\left\{h\left(k_{i}\right)=h\left(k_{j}\right)\right\}$

- Under the assumption of simple uniform hashing, we have

$$
\operatorname{Pr}\left\{h\left(k_{i}\right)=h\left(k_{j}\right)\right\}=1 / m, \text { and } \boldsymbol{E}\left[X_{i j}\right]=1 / m
$$

- The expected number of elements examined in a successful search is :

(1) Chaining analysis

$$
\begin{aligned}
\mathrm{E}\left[\frac{1}{n} \sum_{i=1}^{n}\right. & \left.\left(1+\sum_{j=i+1}^{n} X_{i j}\right)\right] \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} \mathrm{E}\left[X_{i j}\right]\right) \quad \text { (by linearity of expectation) } \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} \frac{1}{m}\right) \\
& =1+\frac{1}{n m} \sum_{i=1}^{n}(n-i) \\
& =1+\frac{1}{n m}\left(\sum_{i=1}^{n} n-\sum_{i=1}^{n} i\right) \\
& \left.=1+\frac{1}{n m}\left(n^{2}-\frac{n(n+1)}{2}\right) \quad \text { (by equation }(\mathrm{A} .1)\right) \\
& =1+\frac{n-1}{2 m} \\
& =1+\frac{\alpha}{2}-\frac{\alpha}{2 n} .
\end{aligned}
$$

(1) Chaining analysis

- $\Theta(1+\alpha)$ means ?
- If the number of hash-table slots is at least proportional to the number of elements in the table, we have

$$
n=O(m) \text { and, } \alpha=n / m=O(m) / m=O(1)
$$

- Thus, searching takes constant time on average.

(2) Open addressing

- In open addressing, all elements are stored in the hash table itself.
- That is, each table slot contains either an element of the dynamic set or NIL.
- The hash table can "fill up"
=> no further insertions can be made;
- load factor $\alpha=n / m \leq 1$.

(2) Open addressing

- The assumption of uniform hashing : we assume that each key is equally likely to have any of the m ! permutations of $<0,1, \ldots, m-1>$ as its probe sequence.
- Linear probing, Quadratic probing, and Double hashing are commonly used to compute the probe sequences required for open addressing.

(2.1) Linear Probing

- $h(k, i)=\left(h^{\prime}(k)+i\right) \bmod m$,
h' : auxiliary hash function
$\mathrm{i}: 0,1, \ldots, m-1$

(2.2) Quadratic Probing

- $h(k, i)=\left(h \prime(k)+c_{1} i+c_{2} i^{2}\right) \bmod m$,
h' : auxiliary hash function
$\mathrm{c}_{1}, \mathrm{c}_{2} \neq 0$: auxiliary constants
i : $0,1, \ldots, m-1$
- This method works much better than linear probing, but to make full use of the hash table,
- the values of $\mathrm{c}_{1}, \mathrm{c}_{2}$, and m are constrained.

(2.3) Double hashing

- $\mathrm{h}(\mathrm{k}, \mathrm{i})=\left(\mathrm{h}_{1}(\mathrm{k})+\mathrm{ih}_{2}(\mathrm{k})\right) \bmod \mathrm{m}$,
$\mathrm{h}_{1}, \mathrm{~h}_{2}$: auxiliary hash function
i : $0,1, \ldots, m-1$
- Double hashing is one of the best methods available for open addressing
- because the permutations produced have many of the characteristics of randomly chosen permutations.

(2) Open addressing

- These techniques all guarantee that $<\mathrm{h}(\mathrm{k}, 0), \mathrm{h}(\mathrm{k}, 1), \ldots, \mathrm{h}(\mathrm{k}, \mathrm{m}-1)>$ is a permutation of $\langle 0,1, \ldots, m-1\rangle$ for each key k
- None of these techniques fulfills the assumption of uniform hashing.
- Double hashing has the greatest number of probe sequences and, as one might expect, seems to give the best results.

(2) Open addressing analysis

Given an open-address hash table with load factor $\alpha=n / m<1$, the expected number of probes in an unsuccessful search is at most $1 /(1-\alpha)$, assuming uniform hashing.

- Define the random variable X to be the number of probes made in an unsuccessful search.
- Define the event A_{i}, for $i=1,2, \ldots$, to be the event that there is an i th probe and it is to an occupied slot.

(2) Open addressing analysis

- Then the event $\{X \geq i\}=A_{1} \cap A_{2} \cap \cdots \cap A_{i-1}$.
- We will bound $\operatorname{Pr}\{X \geq$ i\} by bounding

$$
\begin{aligned}
& \operatorname{Pr}\left\{A_{1} \cap A_{2} \cap \cdots \cap A_{i-1}\right\}=\operatorname{Pr}\left\{A_{1}\right\} \cdot \operatorname{Pr}\left\{A_{2} \mid A_{1}\right\} \cdot \\
& \operatorname{Pr}\left\{A 3 \mid A_{1} \cap A_{2}\right\} \cdot \operatorname{Pr}\left\{A_{i-1} \mid A_{1} \cap A_{2} \cap \cdots \cap A_{i-2}\right\} \\
& \operatorname{Pr}\{X \geq i\}
\end{aligned}=\frac{n}{m} \cdot \frac{n-1}{m-1} \cdot \frac{n-2}{m-2} \cdots \frac{n-i+2}{m-i+2}{ } \begin{aligned}
& \leq\left(\frac{n}{m}\right)^{i-1} \\
& =\alpha^{i-1} .
\end{aligned}
$$

(2) Open addressing analysis

$$
\begin{aligned}
& \mathrm{E}[X]=\sum_{i=1}^{\infty} \operatorname{Pr}\{X \geq i\} \text { If } \alpha \text { is a constant, an } \\
& \sum^{\infty} \text { unsuccessful search runs in } \\
& \text { O(1) time. } \\
& \text { - Ex. average number of probes } \\
& \text { in an unsuccessful search : } \\
& \text { - If the hash table is half full : } \\
& \text { at most } 1 /(1-0.5)=2 \\
& \text { - If the hash table is } \mathbf{9 0 \%} \text { full : } \\
& \text { at most } 1 /(1-0.9)=10
\end{aligned}
$$

(2) Open addressing analysis

Inserting an element into an open-address hash table with load factor α requires at most $1 /(1-\alpha)$ probes on average, assuming uniform hashing.

- Inserting a key requires an unsuccessful search followed by placement of the key in the first empty slot found.
- Thus, the expected number of probes is at most $1 /(1-\alpha)$.

(2) Open addressing analysis

Given an open-address hash table with load factor $\alpha<1$, the expected number of probes in a successful search is at most $\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$, assuming uniform hashing and assuming that each key in the table is equally likely to be searched for.

(2) Open addressing analysis

- if k was the $(i+1) s t$ key inserted into the hash table, the expected number of probes made in a search for k is at most $1 /(1-i / m)=m /(m-i)$.
- Averaging over all n keys in the hash table gives us the average number of probes in a successful search:

$$
\begin{aligned}
\frac{1}{n} \sum_{i=0}^{n-1} \frac{m}{m-i} & =\frac{m}{n} \sum_{i=0}^{n-1} \frac{1}{m-i} \\
& =\frac{1}{\alpha}\left(H_{m}-H_{m-n}\right),
\end{aligned}
$$

(2) Open addressing analysis

$$
\begin{aligned}
\frac{1}{\alpha}\left(H_{m}-H_{m-n}\right) & =\frac{1}{\alpha} \sum_{k=m n-n+1}^{m} 1 / k \\
& \leq \frac{1}{\alpha} \int_{m-n}^{m}(1 / x) d x \quad(\text { by inequality (A.12)) } \\
& =\frac{1}{\alpha} \ln \frac{m}{m-n} \\
& =\frac{1}{\alpha} \ln \frac{1}{1-\alpha}
\end{aligned}
$$

- Ex. the expected number of probes in a successful search is :
- If the hash table is half full : less than 1.387
\otimes If the hash table is $\mathbf{9 0 \%}$ full : less than 2.559

