
Hash table

Speaker : MARK

2008/4/10 L.O.A.D.S. 1

Outline
 Introduction

 Direct addressing table
 Hash table

 Hash function
 Division
 Mid-square
 Folding

 Collision & Overflow handing
 Chaining
 Open addressing

2008/4/10 L.O.A.D.S. 2

Introduction

 Many applications require a dynamic set S to
supports the following dictionary operations:
 Search(k): check if k is in S
 Insert(k): insert k into S
 Delete(k): delete k from S

 Hash table: an effective data structure for
implementing dictionaries

2008/4/10 L.O.A.D.S. 3

Definitions

 U : a set of universe keys

 K : a dynamic set of actual keys
 Like an application needs in which each element has a

key drawn from the universe U = {0, 1, ..., m-1}

 T : the table denoted by T[0 ~ m-1],
 in which each position, or slot, corresponds to a

key in the universe U .

2008/4/10 L.O.A.D.S. 4

Direct addressing table

 Ex.

 Search time = Insert time = Delete time = O(1)

2008/4/10 L.O.A.D.S. 5

Key = 2 Name = John … … …

Slot

Direct addressing table

 The difficulty with direct addressing is obvious:
 The table T size = O(|U|)
 If |K| << |U| , then use too much spaces.

 Time is money ! Space is money, too !?

2008/4/10 L.O.A.D.S. 6

What is hashing ?

 Hashing has following advantages:
 Use hashing to search, data need not be sorted
 Without collision & overflow, search only takes

O(1) time. Data size is not concerned
 Security. If you do not know the hash function,

you cannot get data

2008/4/10 L.O.A.D.S. 7

Hash table
 With direct addressing ,

 an element with key k is stored in slot k

 With hashing ,
 this element is stored in slot h(k)

2008/4/10 L.O.A.D.S. 8

Hash function

 A good hash function satisfies (approximately)
the assumption of simple uniform hashing :

Each key is equally likely to hash to any of the
m slots, independently of where any other key
has hashed to.

2008/4/10 L.O.A.D.S. 9

Hash function

 For example, if the keys k are known to be
random real numbers independently and
uniformly distributed in the range 0 ≤k < 1,
the hash function

h(k) = b km c

satisfies the condition of simple uniform
hashing.

2008/4/10 L.O.A.D.S. 10

Hash function

 Interpreting keys as natural numbers

 Most hash functions assume that the universe
of keys is the set N = {0, 1, 2, ...} of natural
numbers.

 Ex. Key ‘pt’
 p = 112 & t = 116 in ASCII table
 as a radix-128 integer,
‘pt’= (112·128) + 116 = 14452

2008/4/10 L.O.A.D.S. 11

(1) Division

 Mapping a key k into one of m slots by taking
the remainder of k divided by m

 h(k) = k mod m

 Ex. m = 12, k = 100, then h(k) = 4

 Prime number m may be good choice !

2008/4/10 L.O.A.D.S. 12

(2) Mid-square

 Mapping a key k into one of m slots by get the
middle some digits from value k2

 h(k) = k2 get middle (log m) digits

 Ex. m = 10000, k = 113586, log m = 4
h(k) = 1135862 get middle 4 digits

= 12901779369 get middle 4 digits
= 1779

2008/4/10 L.O.A.D.S. 13

(3) Folding

 Divide k into some sections, besides the last
section, have same length . Then add these
sections together.
 a. shift folding
 b. folding at the boundaries

 H(k) = ∑(section divided from k) by a or b

2008/4/10 L.O.A.D.S. 14

(3) Folding

 Ex, k = 12320324111220, section length = 3

2008/4/10 L.O.A.D.S. 15

Collision & Overflow handing

2008/4/10 L.O.A.D.S. 16

Collision!

(1) Chaining

 In chaining, we put all the elements that hash
to the same slot in a linked list

2008/4/10 L.O.A.D.S. 17

(1) Chaining analysis

 Worst-case insert time = O(1)
 insert into the beginning of each link list

 Worst-case search time = Θ(n)
 Every key mapping to the same slot

Ex. h(1) = h(2) = h(3) = … = h(n) = x
then search key ‘1’

2008/4/10 L.O.A.D.S. 18

(1) Chaining analysis

 For j = 0, 1, ..., m-1, let us denote the length of
the list T[j] by nj , so that

n = n0 + n1 + … + nm-1

 the average value of nj is E[nj] = α = n/m.

 Average search time = Θ(1 + α)

2008/4/10 L.O.A.D.S. 19

(1) Chaining analysis

 Unsuccessful search time = Θ(1 + α)

 The expected time to search unsuccessfully for a
key k is the expected time to search to the end of
list T[h(k)], which has expected length
E[nh(k)] = α.

2008/4/10 L.O.A.D.S. 20

(1) Chaining analysis

 Successful search time = Θ(1 + α)
 The situation for a successful search is slightly

different, since each list is not equally likely to be
searched.

 Instead, the probability that a list is searched is
proportional to the number of elements it contains.

2008/4/10 L.O.A.D.S. 21

(1) Chaining analysis

 For keys ki and kj , we define
indicator random variable Xij = I{h(ki) = h(kj)}

 Under the assumption of simple uniform
hashing, we have
Pr{h(ki) = h(kj)} = 1/m, and E[Xij] = 1/m

 The expected number of elements examined in
a successful search is :

2008/4/10 L.O.A.D.S. 22

(1) Chaining analysis

2008/4/10 L.O.A.D.S. 23

Θ(2 + α/2 - α/2n) =
Θ(1 + α)

(1) Chaining analysis

 Θ(1 + α) means ?
 If the number of hash-table slots is at least

proportional to the number of elements in the
table, we have
n = O(m) and, α = n/m = O(m)/m = O(1).

 Thus, searching takes constant time on
average.

2008/4/10 L.O.A.D.S. 24

(2) Open addressing

 In open addressing, all elements are stored in
the hash table itself.

 That is, each table slot contains either an
element of the dynamic set or NIL.

 The hash table can "fill up"
=> no further insertions can be made;

 load factor α = n/m ≤1.

2008/4/10 L.O.A.D.S. 25

(2) Open addressing

 The assumption of uniform hashing :
we assume that each key is equally likely to
have any of the m! permutations of
<0, 1, ..., m–1> as its probe sequence.

 Linear probing, Quadratic probing, and Double
hashing are commonly used to compute the probe
sequences required for open addressing.

2008/4/10 L.O.A.D.S. 26

(2.1) Linear Probing

 h(k, i) = (h’(k) + i) mod m ,
h’: auxiliary hash function
i : 0, 1, ... , m-1

2008/4/10 L.O.A.D.S. 27

(2.2) Quadratic Probing

 h(k, i) = (h’(k) + c1i + c2i2) mod m ,
h’: auxiliary hash function
c1, c2 ≠ 0 : auxiliary constants
i : 0, 1, ... , m-1

 This method works much better than linear
probing, but to make full use of the hash table,

 the values of c1, c2, and m are constrained.

2008/4/10 L.O.A.D.S. 28

(2.3) Double hashing

 h(k, i) = (h1(k) + ih2(k)) mod m ,
h1, h2 : auxiliary hash function
i : 0, 1, ... , m-1

 Double hashing is one of the best methods
available for open addressing

 because the permutations produced have many
of the characteristics of randomly chosen
permutations.

2008/4/10 L.O.A.D.S. 29

(2) Open addressing

 These techniques all guarantee that
<h(k, 0), h(k, 1), ... , h(k, m-1) > is a
permutation of < 0, 1, ..., m–1> for each key k

 None of these techniques fulfills the assumption
of uniform hashing.

 Double hashing has the greatest number of
probe sequences and, as one might expect,
seems to give the best results.

2008/4/10 L.O.A.D.S. 30

Given an open-address hash table with load
factor α = n/m < 1, the expected number of
probes in an unsuccessful search is at most
1/(1-α) , assuming uniform hashing.

 Define the random variable X to be the number of
probes made in an unsuccessful search.

 Define the event Ai , for i = 1, 2, ..., to be the
event that there is an ith probe and it is to an
occupied slot.

(2) Open addressing analysis

2008/4/10 L.O.A.D.S. 31

(2) Open addressing analysis

 Then the event {X ≥i} = A1∩A2∩···∩Ai-1 .
 We will bound Pr{X ≥i} by bounding

Pr {A1∩A2∩···∩Ai-1} = Pr{A1} · Pr{A2|A1} ·
Pr{A3|A1∩A2} · Pr{Ai-1|A1∩A2∩···∩Ai-2}

2008/4/10 L.O.A.D.S. 32

(2) Open addressing analysis

 If α is a constant, an
unsuccessful search runs in
O(1) time.

 Ex. average number of probes
in an unsuccessful search :
 If the hash table is half full :

at most 1/(1 - 0.5) = 2
 If the hash table is 90% full :

at most 1/(1 - 0.9) = 10

2008/4/10 L.O.A.D.S. 33

(2) Open addressing analysis

Inserting an element into an open-address
hash table with load factor α requires at most
1/(1 - α) probes on average, assuming
uniform hashing.

 Inserting a key requires an unsuccessful search
followed by placement of the key in the first
empty slot found.

 Thus, the expected number of probes is at most
1/(1 - α).

2008/4/10 L.O.A.D.S. 34

(2) Open addressing analysis

Given an open-address hash table with load
factor α < 1, the expected number of probes
in a successful search is at most
assuming uniform hashing and assuming that
each key in the table is equally likely to be
searched for.

2008/4/10 L.O.A.D.S. 35

(2) Open addressing analysis

 if k was the (i + 1)st key inserted into the hash
table, the expected number of probes made in a
search for k is at most 1/(1 - i/m) = m/(m-i).

 Averaging over all n keys in the hash table gives
us the average number of probes in a successful
search:

2008/4/10 L.O.A.D.S. 36

(2) Open addressing analysis

 Ex. the expected number of probes in a successful
search is :
 If the hash table is half full : less than 1.387
 If the hash table is 90% full : less than 2.559

2008/4/10 L.O.A.D.S. 37

