CS5371 Theory of Computation

Homework 4

Due: 3:20 pm, December 15, 2006 (before class)

1. Let $\Gamma=\{0,1, \sqcup\}$ be the tape alphabet of all TMs in this problem. Define the busy beaver function $B B: \mathbb{N} \rightarrow \mathbb{N}$ as follows. For each value of k, consider all k-state TMs that halt when started with a blank tape. Let $B B(k)$ be the maximum number of 1 s that remain on the tape among all of these machines. Show that $B B$ is not a computable function.
2. Let $A M B I G_{\mathrm{CFG}}=\{\langle G\rangle \mid G$ is an ambiguous CFG $\}$. Show that $A M B I G_{\mathrm{CFG}}$ is undecidable. (Hint: Use a reduction from $P C P$. Given an instance

$$
P=\left\{\left[\frac{t_{1}}{b_{1}}\right],\left[\frac{t_{2}}{b_{2}}\right], \ldots,\left[\frac{t_{k}}{b_{k}}\right]\right\}
$$

of the Post Correspondence Problem, construct a CFG G with the rules

$$
\begin{aligned}
& S \rightarrow T \mid B \\
& T \rightarrow t_{1} T \mathrm{a}_{1}|\cdots| t_{k} T \mathrm{a}_{k}\left|t_{1} \mathrm{a}_{1}\right| \cdots \mid t_{k} \mathrm{a}_{k} \\
& B \rightarrow b_{1} B \mathrm{a}_{1}|\cdots| b_{k} B \mathrm{a}_{k}\left|b_{1} \mathrm{a}_{1}\right| \cdots \mid b_{k} \mathrm{a}_{k},
\end{aligned}
$$

where $\mathrm{a}_{1}, \ldots, \mathrm{a}_{k}$ are new terminal symbols. Prove that this reduction work.)
3. Define a two-headed finite automaton(2DFA) to be a deterministic finite automaton that has two read-only, bidirectional heads that start at the left-hand end of the input tape and can be independently controlled to move in either direction. The tape of a 2DFA is finite and is just large enough to contain the input plus two additional blank tape cells, one on the left-hand end and one on the right-hand end, that serve as delimiters. A 2DFA accepts its input by entering a special accept state. For example, a 2DFA can recognize the language $\left\{\mathrm{a}^{n} \mathbf{b}^{n} \mathrm{c}^{n} \mid n \geq 0\right\}$.
(a) Let $A_{2 \text { DFA }}=\{\langle M, x\rangle \mid M$ is a 2 DFA and M accepts $x\}$. Show that $A_{2 \text { DFA }}$ is decidable.
(b) Let $E_{2 \text { DFA }}=\{\langle M\rangle \mid M$ is a 2 DFA and $L(M)=\{ \}\}$. Show that $E_{2 \text { DFA }}$ is not decidable.
4. Let $J=\left\{w \mid\right.$ either $w=0 x$ for some $x \in A_{T M}$, or $w=1 y$ for some $\left.y \notin A_{T M}\right\}$. Show that neither J nor the complement of J is Turing-recognizable.
5. Rice's theorem. Let P be any nontrivial property of the language of a Turing machine. Prove that the problem of determining whether a given Turing machine's language has property P is undecidable.
In more formal terms, let P be a language consisting of Turing machine descriptions where P fulfills two conditions. First, P is nontrivial-it contains some, but not all, TM descriptions. Second, P is a property of the TM's language - whenever $L\left(M_{1}\right)=L\left(M_{2}\right)$, we have $\left\langle M_{1}\right\rangle \in P$ if and only if $\left\langle M_{2}\right\rangle \in P$. Here, M_{1} and M_{2} are any TMs. Prove that P is an undecidable language.

