CS5319 Advanced Discrete Structure

Homework 3

Due: 1:10 pm, November 8, 2010 (before class)

1. Solve the following recurrence relations.
(a) $\left\{\begin{array}{l}a_{n+1}-a_{n}=3 n+2, \quad n \geq 0 \\ a_{0}=1\end{array}\right.$
(b) $\left\{\begin{array}{l}a_{n+1}-a_{n}=2 n^{2}-n, \quad n \geq 0 \\ a_{0}=3\end{array}\right.$
2. Solve the following recurrence relations.
(a) $\left\{\begin{array}{l}a_{n+2}-2 a_{n+1}+a_{n}=2^{n}, \quad n \geq 0 \\ a_{0}=1 \\ a_{1}=2\end{array}\right.$
(b) $\begin{cases}a_{n+1}=2 a_{n}-b_{n}+2, & n \geq 0 \\ b_{n+1}=-a_{n}+2 b_{n}-1, & n \geq 0 \\ a_{0}=0 \\ b_{0}=1 & \end{cases}$
3. Suppose that $A(x)$ is the generating function for the sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$.
(a) Find the generating function for the sequence $\left(s_{0}, s_{1}, s_{2}, \ldots\right)$, where

$$
s_{n}=\sum_{i=0}^{n} a_{i} .
$$

(b) Find the generating function for the sequence

$$
\left(0,1^{2}, 1^{2}+2^{2}, 1^{2}+2^{2}+3^{2}, \ldots\right)
$$

4. (a) Let b_{n} denote the number of n-bit binary strings in which the pattern 01001 first occurs at the nth bit. Find the generating function for $\left(b_{0}, b_{1}, \ldots\right)$.
(b) Let c_{n} denote the number of n-bit binary strings in which the pattern 01001 occurs at the nth bit. Using the result of part (a), find the generating function for $\left(c_{0}, c_{1}, \ldots\right)$.
5. Let d_{n} be the number of ways to completely cover a $3 \times n$ rectangle with 3×1 dominoes. Find the generating function for $\left(d_{0}, d_{1}, d_{2}, \ldots\right)$.
