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CS2351
Data Structures

Lecture 15:
B-tree
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About this tutorial

•Introduce External Memory (EM) Model
•Proposed by Aggarwal and Vitter (1988)

•How to perform searching and updating
efficiently when data is on the hard disk ?
•B-tree, B+-tree, B*-tree
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The EM Model
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Dealing with Massive Data
•In some applications, we need

to handle a lot of data
• so much that our RAM is

not large enough to handle
•Ex 1: Sorting most recent 8G

Google search requests
•Ex 2: Finding longest common

patterns in Human and
Mouse DNAs
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Dealing with Massive Data
•Since RAM is not large enough, we need

the hard-disk to help the computation

•Hard-disk is useful:
1. can store input data (obvious)

2. can store intermediate result

•However, there are new concern, because
accessing data in the hard-disk is much
slower than accessing data in RAM
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EM Model [Aggarwal-Vitter, 88]

•Computer is divided into three parts:
CPU, RAM, Hard-disk

•CPU can work with data in RAM directly
•But not directly with data in hard-disk

•RAM can read data from hard-disk, or
write data to hard-disk, using the I/O
(input/output) operations
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EM Model [Aggarwal-Vitter, 88]

•Size of RAM = M items
•Hard-disk is divided in pages

•Size of a disk page = B items
•In one I/O, we can

•read or write one page

•Complexity of an algorithm =
number of I/Os used

 That means, CPU processing is free !

RAM

Disk

I/O
( B items )

( M items)

( infinite items )
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Test Our Understanding
•Suppose we have a set of N numbers,

stored contiguously in the hard-disk

•How many I/Os to find max of the set?
Ans. O( N/B ) I/Os

• Is this optimal ?
Ans. Yes. We must read all #s to find

max, which needs at least N/B I/Os
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B-tree
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Search Tree in EM Model
• BST search needs O( log n ) comparisons

•This is optimal ( why? )
•Key idea of BST : each comparison

reduces the search space by nearly half

•In EM model, each page contains B items
•We can compare more things in 1 I/O
•Can we take advantage of this to

minimize search I/Os ?
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Search Tree in EM Model
•Yes ! Let us use a degree-B tree

67453215
Each node has

B children

keys less
than 15 keys between

15 and 32
keys between

32 and 45

keys between
45 and 67

keys more
than 67
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Search Tree in EM Model
•Search can be done in O(logB n) I/Os

67453215
Each node has

B children

keys less
than 15 keys between

15 and 32
keys between

32 and 45

keys between
45 and 67

keys more
than 67
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B-tree
•We now introduce B-tree which uses the

above concept to support fast searching
•But in order to support fast updating,

the definition is slightly modified
•Precisely, B-tree is a search tree, where

1. Root has 2 to B children ; each other
internal node has B/2 to B children

2. All leaves are on the same level

Flexibility in node degree allows fast updating
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B-tree
•Based on the definition of B-tree

•What is the height of the tree ?
•How many I/Os to search ?
•Is it optimal ? Why ?

•Next, we describe how to perform fast
updates, which is done by two powerful
operations : merge and split
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Updates in a B-tree
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Insertion
•Insertion of a key k first inserts k to

the leaf L that should contain it

insertion path

inert key k
to leaf L
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Insertion : Case 1
•If the leaf L still has at most B keys
 Done !

insertion path

Done if L has
at most B keys
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Insertion : Case 2
•If the leaf L now has B+1 keys (overflow)
 Split L into two nodes
 Insert middle key k’to parent of L

leaf L

L’s parent

Split L

B/2 keys each

Insert k’to
L’s parent
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Insertion : Case 2
•If L’s parent now has at most B children
 Done

•Else if L’s parent now overflows
 Recursively split and insert middle key

to its parent

•Special case: If the current root is split
into two nodes, we create a new root and
joins it to the two nodes
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Insertion Performance
In both cases :
•The number of I/Os is O(logB n)
•The number of operations is O(B logB n)
•All properties of B-tree are maintained

after insertion

Remarks :
Tree height is increased only when the
root is split
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Deletion
•Deletion of a key k is done as follows :

1. If k is in some leaf L, delete k ;
2. Else, k is in some node X.
We locate k’s successor s which

must be in some leaf L; (why?)
 Replace k by s in the node X, and

delete s from the leaf L
 So we can assume that we always delete

a key from some leaf L
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Deletion : Case 1
•If the leaf L still has at least B/2 keys
 Done !

Done if L has
at least B/2 keys
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Deletion : Case 2
•If leaf L now has B/2 - 1 keys (underflow)
 Merge L with a sibling L’

•Now, two sub-cases may happen :
Case 2.1 : overflow occurs
• Split the merged node, and update the

key in the parent  Done !
Case 2.2 : no overflow
•Delete a key from L’s parents
•Recursively update by merge and split
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Deletion : Case 2

Merge L and L’

L’ L

Merged
node

L’s parent parent now has
one less key

Case 2.1 : overflows

Split merged node 
each has B/2 to B keys

update key
in parent

Case 2.2 : no overflow

Recursively delete
key in parent
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Deletion Performance
In both cases :
•The number of I/Os is O(logB n)
•The number of operations is O(B logB n)
•All properties of B-tree are maintained

after insertion

Remarks : The root is deleted when it has
only one child  this child becomes new
root  Tree height decreased by 1
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Final Remarks
•When B = O(1), each operation is done in

O(log n) time (We need B 3. Why?)

•When B = 3, the corresponding B-tree
is called a 2-3 tree

•When B = 4, it is called a 2-3-4 tree,
which is equivalent to a Red-Black tree

•B-tree has two famous variants, B+-tree
and B*-tree (check wiki for more info)


