CS23561
Data Structures

Lecture 15:
B-tree

About this tutorial

» Introduce External Memory (EM) Model
* Proposed by Aggarwal and Vitter (1988)

* How to perform searching and updating
efficiently when data is on the hard disk ?

* B-tree, B*-tree, B*-tree

The EM Model

Dealing with Massive Data

 In some applications, we need
to handle a lot of data

so much that our RAM is
not large enough to handle

+ Ex 1. Sorting most recent 8G
Google search requests

+ Ex 2: Finding longest common
patterns in Human and
Mouse DNAs

Dealing with Massive Data

» Since RAM is not large enough, we need
the hard-disk to help the computation

- Hard-disk is useful:

1. can store input data (obvious)
2. can store intermediate result

- However, there are new concern, because

accessing data in the hard-disk is much
slower than accessing data in RAM

EM Model [Aggarwal-Vitter, 88]

+ Computer is divided into three parts:
CPU, RAM, Hard-disk

» CPU can work with data in RAM directly
* But not directly with data in hard-disk

- RAM can read data from hard-disk, or

write data to hard-disk, using the I/0
(input/output) operations

EM Model [Aggarwal-Vitter, 88]

+ Size of RAM = M items
* Hard-disk is divided in pages

- Tnone I/0O, we can

+ Size of adisk page = Bitems | RaAM
(M items)

, I/0
* read or write one page (g items) T l
—

+ Complexity of an algorithm = |~ o~
number of I/Os used (Gininirelitems))

= That means, CPU processing is free |
,

Test Our Understanding

» Suppose we have a set of N numbers,
stored contiguously in the hard-disk

* How many I/Os to find max of the set?
Ans. O(N/B)I/Os

Is this optimal ?

Ans. Yes. We must read all #s to find
max, which needs at least N/B I/Os

8

B-tree

Search Tree in EM Model

BST search needs O(log n) comparisons
* This is optimal (why?)

+ Key idea of BST : each comparison
reduces the search space by nearly half

* In EM model, each page contains B items
* We can compare more things in1TI/0

» Can we take advantage of this to
minimize search I/Os ?

10

Search Tree in EM Model

* Yes!| Let us use a degree-B tree

15

32

45

67

keys less

than 15 keys between

15 and 32

32 and 45

Each node has
<4- ~ B children

keys more

keys between than 67
45 and 67

keys between

11

Search Tree in EM Model
» Search can be done in O(logg n) I/0s

15

32

45

67

keys less

than 15 keys between

15 and 32

32 and 45

Each node has
<4- ~ B children

keys more

keys between than 67
45 and 67

keys between

12

B-tree

We now introduce B-tree which uses the
above concept to support fast searching

But in order to support fast updating,
the definition is slightly modified

* Precisely, B-tree is a search tree, where

1. Root has 2 to B children ; each other
internal node has B/2 to B children

2. All leaves are on the same level

Flexibility in node degree allows fast updating
13

B-tree

+ Based on the definition of B-tree

* What is the height of the tree ?
* How many I/Os to search ?
. Is it optimal ? Why ?

* Next, we describe how to perform fast
updates, which is done by two powerful
operations : merge and split

14

Updates in a B-tree

15

Insertion

» Insertion of a key k first inserts k to
the leaf L that should contain it

«--" insertion path

inert key k
to leaf L

16

Insertion : Case 1

* If the leaf L still has at most B keys
- Done |

« — — — insertion path

Done if L has
at most B keys

17

Insertion : Case 2

» If the leaf L now has B+1 keys (overflow)
- Split L into two nodes

- Insert middle key k' to parent of L

split L @
‘ Insert k' to

p— Ey

P ~

! PR L's parent
L's pare&\ B)\ /(\ i)\
leaf L b 2

B/2 keys each 18

Insertion : Case 2

+ If L's parent now has at most B children
- Done
+ Else if L's parent now overflows

- Recursively split and insert middle key
to its parent

+ Special case: If the current root is split
into two nodes, we create a new root and
joins it o the two nodes

19

Tnsertion Performance

In both cases :
* The number of I/O0s is O(logg h)
* The number of operations is O(B logg n)

» All properties of B-tree are maintained
after insertion

Remarks :

Tree height is increased only when the
root is split

20

Deletion

» Deletion of a key k is done as follows :
1. If kis in some leaf L, delete k ;
2. Else, kis in some node X.

- We locate k's successor s which
must be in some leaf L; (why?)

-~ Replace k by s in the node X, and
delete s from the leaf L

=> So we can assume that we always delete
a key from some leaf L

21

Deletion : Case 1
+ If the leaf L still has at least B/2 keys

=)

\

Done if L has O
at least B/2 keys

Deletion : Case 2

» If leaf L now has B/2 - 1 keys (underflow)
> Merge L with a sibling L'

* Now, two sub-cases may happen :
Case 2.1 : overflow occurs

Split the merged node, and update the
key in the parent > Done |

Case 2.2 : no overflow
* Delete a key from L's parents
* Recursively update by merge and split

23

Deletion : Case 2

L's parent

TS Merge Land L' -7 7>,

L _

Ao) —
node

parent now has
one less key

~

Case 2.1 : overflows

- -~

”

update key
/‘ N)\ In parent

Split merged node =2
each has B/2 to B keys

Case 2.2 : no overflow

- -~

”

\
/(NS oo ;l\
Recursively delete
key in parent 24

Deletion Performance

In both cases :
* The number of I/O0s is O(logg h)
* The number of operations is O(B logg n)

» All properties of B-tree are maintained
after insertion

Remarks : The root is deleted when it has
only one child = this child becomes new
root = Tree height decreased by 1

25

Final Remarks

* When B = O(1), each operation is done in

O(log n) time (We need B > 3. Why?)

* When B = 3, the corresponding B-free
is called a 2-3 tree

- When B =4, it is called a 2-3-4 tree,
which is equivalent to a Red-Black tree

- B-tree has two famous variants, B*-tree

and B*-tree (check wiki for more info)

26

