
1

CS2351
Data Structures

Lecture 15:
B-tree

2

About this tutorial

•Introduce External Memory (EM) Model
•Proposed by Aggarwal and Vitter (1988)

•How to perform searching and updating
efficiently when data is on the hard disk ?
•B-tree, B+-tree, B*-tree

3

The EM Model

4

Dealing with Massive Data
•In some applications, we need

to handle a lot of data
• so much that our RAM is

not large enough to handle
•Ex 1: Sorting most recent 8G

Google search requests
•Ex 2: Finding longest common

patterns in Human and
Mouse DNAs

5

Dealing with Massive Data
•Since RAM is not large enough, we need

the hard-disk to help the computation

•Hard-disk is useful:
1. can store input data (obvious)

2. can store intermediate result

•However, there are new concern, because
accessing data in the hard-disk is much
slower than accessing data in RAM

6

EM Model [Aggarwal-Vitter, 88]

•Computer is divided into three parts:
CPU, RAM, Hard-disk

•CPU can work with data in RAM directly
•But not directly with data in hard-disk

•RAM can read data from hard-disk, or
write data to hard-disk, using the I/O
(input/output) operations

7

EM Model [Aggarwal-Vitter, 88]

•Size of RAM = M items
•Hard-disk is divided in pages

•Size of a disk page = B items
•In one I/O, we can

•read or write one page

•Complexity of an algorithm =
number of I/Os used

 That means, CPU processing is free !

RAM

Disk

I/O
(B items)

(M items)

(infinite items)

8

Test Our Understanding
•Suppose we have a set of N numbers,

stored contiguously in the hard-disk

•How many I/Os to find max of the set?
Ans. O(N/B) I/Os

• Is this optimal ?
Ans. Yes. We must read all #s to find

max, which needs at least N/B I/Os

9

B-tree

10

Search Tree in EM Model
• BST search needs O(log n) comparisons

•This is optimal (why?)
•Key idea of BST : each comparison

reduces the search space by nearly half

•In EM model, each page contains B items
•We can compare more things in 1 I/O
•Can we take advantage of this to

minimize search I/Os ?

11

Search Tree in EM Model
•Yes ! Let us use a degree-B tree

67453215
Each node has

B children

keys less
than 15 keys between

15 and 32
keys between

32 and 45

keys between
45 and 67

keys more
than 67

12

Search Tree in EM Model
•Search can be done in O(logB n) I/Os

67453215
Each node has

B children

keys less
than 15 keys between

15 and 32
keys between

32 and 45

keys between
45 and 67

keys more
than 67

13

B-tree
•We now introduce B-tree which uses the

above concept to support fast searching
•But in order to support fast updating,

the definition is slightly modified
•Precisely, B-tree is a search tree, where

1. Root has 2 to B children ; each other
internal node has B/2 to B children

2. All leaves are on the same level

Flexibility in node degree allows fast updating

14

B-tree
•Based on the definition of B-tree

•What is the height of the tree ?
•How many I/Os to search ?
•Is it optimal ? Why ?

•Next, we describe how to perform fast
updates, which is done by two powerful
operations : merge and split

15

Updates in a B-tree

16

Insertion
•Insertion of a key k first inserts k to

the leaf L that should contain it

insertion path

inert key k
to leaf L

17

Insertion : Case 1
•If the leaf L still has at most B keys
 Done !

insertion path

Done if L has
at most B keys

18

Insertion : Case 2
•If the leaf L now has B+1 keys (overflow)
 Split L into two nodes
 Insert middle key k’to parent of L

leaf L

L’s parent

Split L

B/2 keys each

Insert k’to
L’s parent

19

Insertion : Case 2
•If L’s parent now has at most B children
 Done

•Else if L’s parent now overflows
 Recursively split and insert middle key

to its parent

•Special case: If the current root is split
into two nodes, we create a new root and
joins it to the two nodes

20

Insertion Performance
In both cases :
•The number of I/Os is O(logB n)
•The number of operations is O(B logB n)
•All properties of B-tree are maintained

after insertion

Remarks :
Tree height is increased only when the
root is split

21

Deletion
•Deletion of a key k is done as follows :

1. If k is in some leaf L, delete k ;
2. Else, k is in some node X.
We locate k’s successor s which

must be in some leaf L; (why?)
 Replace k by s in the node X, and

delete s from the leaf L
 So we can assume that we always delete

a key from some leaf L

22

Deletion : Case 1
•If the leaf L still has at least B/2 keys
 Done !

Done if L has
at least B/2 keys

23

Deletion : Case 2
•If leaf L now has B/2 - 1 keys (underflow)
 Merge L with a sibling L’

•Now, two sub-cases may happen :
Case 2.1 : overflow occurs
• Split the merged node, and update the

key in the parent  Done !
Case 2.2 : no overflow
•Delete a key from L’s parents
•Recursively update by merge and split

24

Deletion : Case 2

Merge L and L’

L’ L

Merged
node

L’s parent parent now has
one less key

Case 2.1 : overflows

Split merged node 
each has B/2 to B keys

update key
in parent

Case 2.2 : no overflow

Recursively delete
key in parent

25

Deletion Performance
In both cases :
•The number of I/Os is O(logB n)
•The number of operations is O(B logB n)
•All properties of B-tree are maintained

after insertion

Remarks : The root is deleted when it has
only one child  this child becomes new
root  Tree height decreased by 1

26

Final Remarks
•When B = O(1), each operation is done in

O(log n) time (We need B 3. Why?)

•When B = 3, the corresponding B-tree
is called a 2-3 tree

•When B = 4, it is called a 2-3-4 tree,
which is equivalent to a Red-Black tree

•B-tree has two famous variants, B+-tree
and B*-tree (check wiki for more info)

