CSbh371
Theory of Computation

Lecture 6: Automata Theory IV
(Regular Expression = NFA = DFA)



Objectives

» Give formal definition of Regular
Expression

» Show that the power of Reqgular

Expression = the power of NFA = the
power of DFA

- in terms of describing a language



Regular Expression
(Formal Definition)

* We say R is a regular expression if R is

- a for some a in the alphabet %, or
- g, or

Don't confuse ¢ with ()
- @, or

- (R;{ UR,), where R; and R, are regular

expressions, or

- (R; 0 R,), where R; and R, are regular
expressions, or

- (R;*), where R, is a regular expression



True or False?
- RUDP=R True

e Rog=R True
- RUue=R False

ORo@:R False



Equivalence with NFA
(Part I)

Lemma: If alanguage is described by a
regular expression, then it is regular.

Proof: Let R be the regular expression
and L be the language described by R.

Note: L is sometimes written as L(R)

We show how to convert R into an NFA
recognizing L(R).



Six Cases to Consider

(1) R = a for some a in the alphabet X.
Then L(R) = {a}, and the following
NFA recognizes L(R)

a
—




(2) R=¢. ThenL(R) = {¢}, and the
following NFA recognizes L(R)

>‘

(3) R=0. ThenL(R) ={}, and the
following NFA recognizes L(R)

>‘




For the last three cases:

(4)R=R, UR,
(5)R =R, oR,
(6)R = R,*

we use the constructions given in the
proofs that the class of regular language
is closed under the regular operations.

- In other words, we construct NFA for R
from NFA for R; and NFA for R,



Converting R to NFA (Example)
R=(abuU a)*

a
. —@ @
b
v @ Q)
a e b
ab —.







Equivalence with NFA
(Part IT)

Lemma: If alanguage is reqular, it can be
described by a regular expression.

Proof: Let L be the reqular language. We
will convert the DFA for L into a regular
expression. Before that, we intfroduce a
new type of automaton: the generalized

non-deterministic finite automaton
(GNFA)



GNFA

» Similar fo NFA, except that the labels on
the transition arrows are regular
expressions (instead of a character or &)

* To move along a transition arrow, we read
blocks of characters such that it matches
the description of the regular expression
on that arrow

* An input string is accepted if there is a
way to read the input string such that the
GNFA is in an accepting state after
processing the whole input string



GNFA (Example)




GNFA (further assumptions)

* Only one start state q ..+, With no
Incoming arrows

* Only one accepting state qy .., With
ho outgoing arrows

* Each state (except Ggqrt AN Gyecept)
has exactly one arrow going to every
other state and also itself



Converting DFA to GNFA

- Add a new start state, with ¢ arrow to the
original start state

» Add a new accept state, with ¢ arrow from
each of the original accept state

» If original arrow has multiple labels, we
replace this with a new arrow whose label
is a regular expression formed by the union
of the labels

- If or'i%inally no arrow between two states,
we add a néw arrow whose label is ()



Converting DFA to GNFA
(Example)




Converting GNFA
to Regular Expression

+ We iteratively remove one state in
GNFA, such that after each state
removal, the new GNFA obtained will
recognize the same language as the
previous one

* When the number of states of GNFA
is 2, we have the regular expression
(why??)



How to remove a state?

- Select any state q except g+ and

qaccep‘r
* Remove q

- To compensate the absence of q, the
hew label on the arrow from g; to g;
becomes a regular expression that'
describes all strings that would take the
GNFA to go from g; to q;, either directly
or via q



How to remove a state
(Example)

‘ R,U (Ry) (Rz)*(Rsz‘

Before Removal After Removal



Previous Example

Before Removal After Removal



Previous Example

Before Removal After Removal



Previous Example

Before Removal: a(aa U b)*

—>

a(@auUb)rabub bauUa)(@aauUb)*Ue

(ba U a) (aa U b)* ab U bb

O

After Removal:

‘




Final Step

—@ O

(a(aa U b)*ab U b)((ba U a) (aa U b)* ab U bb)*
(ba U a) (aa U b)* U €) U a(aa U b)*




What we have learnt so far
. DFA = NFA

- proof by construction

* Regular Expression = DFA

- proof by construction

* Pumping Lemma

- proof by contradiction

+ Existence of Non-regular Languages
- pumping lemma



Next Time

+ Context Free Grammar

- A more powerful way to describe a
language



