
CS5371
Theory of Computation

Lecture 6: Automata Theory IV
(Regular Expression = NFA = DFA)

•Give formal definition of Regular
Expression

•Show that the power of Regular
Expression = the power of NFA = the
power of DFA
–in terms of describing a language

Objectives

Regular Expression
(Formal Definition)

•We say R is a regular expression if R is
–a for some a in the alphabet , or
–, or
–;, or
–(R1 [R2), where R1 and R2 are regular

expressions, or
–(R1 o R2), where R1 and R2 are regular

expressions, or
–(R1*), where R1 is a regular expression

Don’t confuse with ;

True or False?

•R [; = R
•R o = R
•R [= R

•R o; = R

True

True

False

False

Equivalence with NFA
(Part I)

Lemma: If a language is described by a
regular expression, then it is regular.

Proof: Let R be the regular expression
and L be the language described by R.

We show how to convert R into an NFA
recognizing L(R).

Note: L is sometimes written as L(R)

Six Cases to Consider

(1) R = a for some a in the alphabet .
Then L(R) = {a}, and the following
NFA recognizes L(R)

a

(2) R = . Then L(R) = {}, and the
following NFA recognizes L(R)

(3) R = ;. Then L(R) = { }, and the
following NFA recognizes L(R)

For the last three cases:
(4) R = R1 [R2

(5) R = R1 o R2

(6) R = R1*

we use the constructions given in the
proofs that the class of regular language
is closed under the regular operations.
–In other words, we construct NFA for R

from NFA for R1 and NFA for R2

Converting R to NFA (Example)

R = (ab [a)*
a

a

b
b

a
ab

b

ab [a

a

a b





(ab [a)*

a

a b










Equivalence with NFA
(Part II)

Lemma: If a language is regular, it can be
described by a regular expression.

Proof: Let L be the regular language. We
will convert the DFA for L into a regular
expression. Before that, we introduce a
new type of automaton: the generalized
non-deterministic finite automaton
(GNFA)

GNFA
•Similar to NFA, except that the labels on

the transition arrows are regular
expressions (instead of a character or )

•To move along a transition arrow, we read
blocks of characters such that it matches
the description of the regular expression
on that arrow

•An input string is accepted if there is a
way to read the input string such that the
GNFA is in an accepting state after
processing the whole input string

GNFA (Example)

qstart

qaccept

b

ab [ba
;

a*

aa
ab*

(aa)*

b*

ab

GNFA (further assumptions)

•Only one start state qstart, with no
incoming arrows

•Only one accepting state qaccept, with
no outgoing arrows

•Each state (except qstart and qaccept)
has exactly one arrow going to every
other state and also itself

Converting DFA to GNFA

•Add a new start state, with arrow to the
original start state

•Add a new accept state, with arrow from
each of the original accept state

•If original arrow has multiple labels, we
replace this with a new arrow whose label
is a regular expression formed by the union
of the labels

•If originally no arrow between two states,
we add a new arrow whose label is ;

Converting DFA to GNFA
(Example)

a

a

b

b

b
a

DFA

a

a
b

b

b
a

GNFA







Converting GNFA
to Regular Expression

•We iteratively remove one state in
GNFA, such that after each state
removal, the new GNFA obtained will
recognize the same language as the
previous one

•When the number of states of GNFA
is 2, we have the regular expression
(why??)

How to remove a state?

•Select any state q except qstart and
qaccept

•Remove q
–To compensate the absence of q, the

new label on the arrow from qi to qj
becomes a regular expression that
describes all strings that would take the
GNFA to go from qi to qj, either directly
or via q

How to remove a state
(Example)

R1

R2

R4

R3

qi qj

Before Removal

q

R4[(R1) (R2)*(R3)qi
qj

After Removal

a

a
b

b

b
a

Before Removal







Previous Example

aa [b

?





After Removal

a

b
?

?

Before Removal

Previous Example

aa [b





After Removal

a

b

ab

ba [a

bb

?

? ?

?

Before Removal:

Previous Example

After Removal:

a(aa [b)*

(ba [a) (aa [b)* [

(ba [a) (aa [b)* ab [bb

a(aa [b)*ab [b

?

Final Step

(a(aa [b)*ab [b)((ba [a) (aa [b)* ab [bb)*

((ba [a) (aa [b)* [) [a(aa [b)*

What we have learnt so far
•DFA = NFA

–proof by construction
•Regular Expression = DFA

–proof by construction
•Pumping Lemma

–proof by contradiction
•Existence of Non-regular Languages

–pumping lemma

Next Time

•Context Free Grammar
–A more powerful way to describe a

language

