CS 2336
 Discrete Mathematics

Lecture 2
Logic: Predicate Calculus

Outline

- Predicates
- Quantifiers
- Binding
- Applications
- Logical Equivalences

Predicates

- In mathematics arguments, we will often see sentences containing variables, such as:
$-x>0$
$-x=y+3$
- Computer x is functioning properly
- For each sentence, we call
- the variables as the subject of the sentence
- the other part, which describes the property of the variables, as the predicate of the sentence

Predicates

- Take $x>0$ as an example
$-x$: the subject
$->0$: the predicate
- Once the value of X is assigned, the above sentence becomes a proposition and has a truth value
- We can denote it as some function $\mathrm{P}(x)$ of x $-P$ is called a propositional function

Predicates

- Example 1: Let $\mathrm{P}(x)$ denote the sentence " $x>0$ ". What are the truth values of $P(0)$ and $P(1)$?
- Example 2:

Let $\mathrm{Q}(x, y)$ denote the sentence " $x=y+3$ ". What are the truth values of $\mathrm{Q}(1,2)$ and $\mathrm{Q}(3,0)$?

Quantifiers

- In English, the words all, some, many, none, few are used to express some property (predicate) is true over a range of subjects
- These words are called quantifiers
- In mathematics, two important quantifiers are commonly used to create a proposition from a propositional function:
universal quantifier and existential quantifier

Universal Quantifier

- Many mathematical statements say that a property is true for all values of a variable, when values are chosen from some domain
- Examples:
$-z(z+1)(z+2)$ is divisible by 6 for all integer z
$-q^{2}$ is rational for all rational number q
$-r^{3}>0$ for all positive real number r
- Important Note: Domain needs to be specified!

Universal Quantifier

- Universal Quantifier

The universal quantification of $\mathrm{P}(x)$ is the proposition
" $\mathrm{P}(x)$ for all values of x in the domain."
The notation $\forall x \mathrm{P}(x)$ represents the above proposition.
A value of x making the proposition false is called a counter-example.

Universal Quantifier

- If all values in the domain can be listed, say x_{1}, $\mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}$, then $\forall x \mathrm{P}(x)$ is the same as

$$
P\left(x_{1}\right) \wedge P\left(x_{2}\right) \wedge \ldots \wedge P\left(x_{k}\right)
$$

- Example:

What is the truth value of $\forall x(x \leq 10)$ when the domain consists of all positive integers not exceeding 3 ?
What is the truth value of $P(1) \wedge P(2) \wedge P(3)$?

Test Your Understanding

- What is the truth value of

$$
\forall x\left(x^{2} \geq x\right)
$$

-if the domain consists of all real numbers?
-if the domain consists of all integers?

Test Your Understanding (Solution)

- False, if the domain consists of all real numbers. In particular, the case

$$
x=0.5
$$

is a counter-example.

- True, if the domain consists of all integers. To see this, we notice the following equivalences:

$$
x^{2} \geq x \Leftrightarrow x(x-1) \geq 0 \Leftrightarrow x \leq 0 \text { or } x \geq 1
$$

Thus, $x^{2} \geq x$ cannot be false, since there are no integers x with $0<x<1$.

Existential Quantifier

- Many mathematical statements say that a property is true for some value of a variable, when values are chosen from some domain
- Examples:
$-2^{2^{z}}+1$ is a prime for some non-negative integer z
$-r^{s}$ is rational for some irrational numbers r and s
- Important Note: Domain needs to be specified!

Existential Quantifier

- Existential Quantifier

The existential quantification of $\mathrm{P}(x)$ is the proposition
" $\mathrm{P}(x)$ for some value of x in the domain."
The notation $\exists x \mathrm{P}(x)$ represents the above proposition.
The proposition is false if and only if $\mathrm{P}(x)$ is false for all values of x.

Existential Quantifier

- If all values in the domain can be listed, say x_{1}, $\mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}$, then $\exists x \mathrm{P}(x)$ is the same as

$$
P\left(x_{1}\right) \vee P\left(x_{2}\right) \vee \ldots \vee P\left(x_{k}\right)
$$

- Example:

What is the truth value of $\exists x(x \leq 0)$ when the domain consists of all positive integers not exceeding 3 ?
What is the truth value of $P(1) \vee P(2) \vee P(3)$?

Test Your Understanding

- What is the truth value of

$$
\exists z\left(z^{2} \geq 10\right)
$$

- if the domain consists of all positive integers not exceeding 3 ?
-if the domain consists of all integers not exceeding 3 ?

Quantifiers with Restricted Domain

- Sometimes, we want to simplify the writing by using short-hand notation
- Assuming the domain consists of all integers, guess what does each of the following mean?
$-\forall x<0\left(x^{2}>0\right)$
$-\forall y \neq 0\left(y^{3} \neq 0\right)$
$-\exists z>0\left(z^{2}=10\right)$

Quantifiers with Restricted Domain

- $\forall x<0\left(x^{2}>0\right)$ means
"For every x in the domain with $x<0, x^{2}>0$."
The proposition is the same as:

$$
\forall x\left(x<0 \rightarrow x^{2}>0\right)
$$

- $\exists z>0\left(z^{2}=10\right)$ means
"There is some z in the domain with $z>0, z^{2}=10$."
The proposition is the same as:

$$
\exists z\left(z>0 \wedge z^{2}=10\right)
$$

Binding Variables

- If there is a quantifier used on a variable \boldsymbol{X}, we say the variable is bound. Else it is free.
- Ex: In $\exists x(x+y=1), x$ is bound and y is free
- If all variables in a propositional function are bound, the function becomes a proposition
- Ex: $\forall y \exists x(x+y=1)$ is a proposition

Multiple Quantifiers

- In the last example, we have a proposition

$$
\forall y \exists x(x+y=1)
$$

with two quantifiers, where
$\forall y$ is applied to $\exists x(x+y=1)$, and
$\exists x$ is applied to $x+y=1$

- The part of the logical expression where a quantifier is applied is called the scope of that quantifier

Multiple Quantifiers

- How about this?

$$
\forall y \neq 0\left(y^{3} \neq 0\right) \wedge \exists x(x=1)
$$

What is the scope of y ?

- Quantifier is assumed to have a higher precedence than logical operators, so the above is the same as:

$$
\forall x \neq 0\left(x^{3} \neq 0\right) \wedge \exists x(x=1)
$$

The Order of Quantifiers

- Order in which quantifiers appear is important
- Example:

Suppose that the domain for both x and y are integers. What are the truth values of the following?

1. $\forall y \exists x(x+y=1)$
2. $\exists x \forall y(x+y=1)$

The Order of Quantifiers

- Two special cases where the order of quantifiers is not important are:

1. All quantifiers are universal quantifiers
2. All quantifiers are existential quantifiers

- Example:

$$
\exists x \exists y(x+y=1)
$$

means the same as

$$
\exists y \exists x(x+y=1)
$$

Applications: English Translation

- How to translate the following sentence
"Every student in this class has studied Calculus." into a logical expression, if
$Q(x)$ denotes " x has studied Calculus", and
the domain of x is all students in this class?
- What if the domain of X consists of all students in NTHU?

Applications: English Translation

- How to translate the following sentences

1. "All lions are fierce."
2. "Some lion does not drink coffee."
3. "Some fierce creatures do not drink coffee."
into logical expressions, if

$$
\begin{aligned}
& \mathrm{P}(x):=\text { " } x \text { is a lion", } \quad \mathrm{Q}(x):=" x \text { is fierce", } \\
& \mathrm{R}(x):=\text { " } x \text { drinks coffee", } \\
& \text { and the domain of } x \text { consists of all creatures? }
\end{aligned}
$$

Applications: English Translation

- How to translate the following sentence
"If a person is a female and is a parent, then this person is someone's mother"
into a logical expression, if
$\mathrm{F}(x):=$ " x is a female", $\mathrm{P}(x):=$ " x is a parent",
$\mathrm{M}(x, y):=$ " x is a mother of y ",
and the domain consists of all people?

Applications: English Translation

- How to translate the following sentence "Every person has exactly one best friend" into a logical expression, if
$\mathrm{B}(x, y):=$ " y is a best friend of x ", and the domain consists of all people?

Applications: English Translation

- How to translate the following sentence
"There is a woman who has taken a flight on every airline in the world"
into a logical expression, if

$$
\begin{aligned}
& \mathrm{P}(\mathcal{w}, f):=" w \text { has taken a flight } f ", \\
& \mathrm{Q}(f, a):=" f \text { is a flight of airline } a ",
\end{aligned}
$$

and the domains of w, f, a consist of all women in the world, all airplane flights, and all airlines, respectively?

Applications: Math Translation

- How to translate the statements

1. "The sum of two positive integers is always positive"
2. "Every real number, except 0 , can find some real number such that their product is $1^{\prime \prime}$
into logical expressions?

Applications: Translating Expression

- How to translate the following expression
$\exists x \forall y \forall z$

$$
((\mathrm{F}(x, y) \wedge \mathrm{F}(x, z) \wedge(y \neq z)) \rightarrow \neg \mathrm{F}(y, z))
$$

into English, if

$$
\mathrm{F}(x, y):=\text { " } x \text { is a friend of } y \text { ", }
$$

and the domain consists of all people?

Logical Equivalences

- As in the case of propositions, some common logical equivalences have been derived for predicates and quantifiers
- Examples:

$$
\begin{aligned}
& \text { 1. } \exists x \exists y \mathrm{P}(x, y) \equiv \exists y \exists x \mathrm{P}(x, y) \\
& \text { 2. } \forall x \forall y \mathrm{P}(x, y) \equiv \forall y \forall x \mathrm{P}(x, y)
\end{aligned}
$$

hold for any predicate P , and any domain

Logical Equivalences

- De Morgan's Laws

$$
\begin{aligned}
& \text { 1. } \neg \forall x \mathrm{P}(x) \equiv \exists x \neg \mathrm{P}(x) \\
& \text { 2. } \neg \exists x \mathrm{P}(x) \equiv \forall x \neg \mathrm{P}(x)
\end{aligned}
$$

- Can you show that

$$
\neg \forall x(\mathrm{P}(x) \rightarrow \mathrm{Q}(x))
$$

is equivalent to

$$
\exists x(\mathrm{P}(x) \wedge \neg \mathrm{Q}(x)) ?
$$

