CS 2336
 Discrete Mathematics

Lecture 7

Counting: Basics

Outline

- Rule of Sum
- Rule of Product
- Principle of Inclusion-Exclusion
- Tree Diagrams

Rule of Sum

- PizzaHut is currently serving the following kinds of individual meals:

Pizzas: Supreme, Takoyaki, Kimchi, Hawaiian, Smoked House, Seafood, Veggie Delight, Veggie, Beef

Pastas: Seafood Marinara, Chicken, Curry Veggie, Seafood Carbonara, Lasagna, Bolognaise

Rule of Sum

- Bruce wants to try a different meal each day. How long does it take for him to try each meal once ?
- There are 9 kinds of pizzas, and 6 kinds of pastas.

Altogether, there are $9+6=15$ kinds of meal
\rightarrow Bruce needs 15 days

Rule of Sum

- In general, we have the following rule :

Rule of Sum :
If one event can occur in m ways and another event can occur in n ways, then there are $m+n$ ways that one of these events can occur

Rule of Product

- PizzaHut also offers various side drinks :

Soup, Coke, Sprite, Coke Zero, Sokenbicha

- Suppose that Bruce wants to include a drink with his individual meal each day (15 of them). How many different combinations are there ?

Rule of Product

- In general, we have the following rule :

Rule of Product :

If one event can occur in mays and another event can occur in n ways, then there are $m \times n$ ways that both of these events can occur together

Examples

- Consider the following map :

- How many different ways can we travel from A to B ?

Examples

- For n given weights, what is the greatest number of different amount that can be made up by a combination of these weights ?
- We assume that weights can only be put on the same side of the balance

Examples

- Answer: $2^{\mathrm{n}}-1$ (why?)
- Challenge :

If Alison wants to weigh different items with weight equal to an integer between 1 and 100, can you help her to design a minimum set of weights ?

Examples

- How many divisors does 1400 have ?
- Answer:

Since $1400=2^{3} \times 5^{2} \times 7$,
the number of divisors $=(3+1) \times(2+1) \times(1+1)=24$
Indeed, these are all the divisors :

$$
\begin{gathered}
1,2,4,5,7,8,10,14,20,25,28,35,40,50,56, \\
70,100,140,175,200,280,350,700,1400
\end{gathered}
$$

More Examples

- There are

5 Chinese books, 7 English books, 10 French books
How many ways to choose two books of different languages from them ?

- Answer : $5 \times 7+5 \times 10+7 \times 10=155$ ways

More Examples

- A password in a computer system has the following requirements :

1. The length is between 6 and 8 characters ;
2. Each character can be an uppercase letter, a lowercase letter, or a digit
3. Each password must contain at least one digit

- How many possible passwords are there ?

Principle of Inclusion-Exclusion

- How many bit strings of length eight either start with 1 or end with 00 ?
- Answer:
number of strings that start with 1 :
$2^{7}=128$ number of strings that end with 00 :
$2^{6}=64$ number of strings that start with 1 and end with 00 :
$2^{5}=32$
The desired number : $128+64-32=160$

Principle of Inclusion-Exclusion

- In general, we have the following rule :

Inclusion-Exclusion Principle (for two sets) :
If one event can occur in m ways or n ways, and there are r ways that are common to the two different ways, then the number of ways an event can occur is $m+n-r$

Example

- There are 350 applicants to a job, and
(i) 220 with major in CS
(ii) 147 with major in Business
(iii) 51 with major in both CS and Business
- How many have major neither in CS nor Business ? \# applicants with major in CS, Business, or both
$=220+147-51=316$
\rightarrow The desired answer : 350-316=34

Tree Diagrams

- A tree is a special type of graphs that contains
(1) a root;
(2) branches leaving the root ;
(3) possibly additional branches leaving the endpoints of other branches

- Nodes without any branches leaving are called leaves

Tree Diagrams

- Counting problems can be solved using tree diagrams
- To do so, we use
(1) a branch to represent each possible choice, and
(2) a leaf to represent each possible outcome
- Note: Number of choices of which branch to follow to reach a leaf can vary

Examples

- How many bit strings of length four do not have two consecutive 1s ?

Examples

- In a best-of-five playoff between two teams, whoever wins 3 games will win the playoff
- How many different ways can the playoff occur ?

