CS 2336
 Discrete Mathematics

Lecture 18
Trees: Spanning Trees

Outline

- What is a Spanning Tree ?
- Counting Spanning Trees
- Prüfer Code

What is a Spanning Tree ?

- Let G be a simple graph

Definition: A spanning tree of G is a subgraph of G that is a tree containing every vertex of G

- Ex:

G

a spanning tree of G

What is a Spanning Tree ?

- Let G be a simple graph

Theorem :
G is connected $\Leftrightarrow G$ has a spanning tree

- Proof:

The "if" case is trivial. For the "only if" case, we repeatedly remove an edge from a loop in G until G contains no loop. The resulting graph must be connected, and thus is a spanning tree of G.

Counting Spanning Trees

- How many spanning trees are there in the following graphs ?

2

3

Counting Spanning Trees

- How many spanning trees are there in the following graphs?

Counting Spanning Trees

- Consider the complete graph K_{n}, with $\mathrm{n} \geq 2$

Theorem :

K_{n} has $\mathrm{n}^{\mathrm{n}-2}$ different spanning trees

- The above is known as the Cayley's formula
- The theorem can be proven by induction, through the use of Prüfer codes (see next page)

Prüfer Codes

- Suppose that vertices of K_{n} are labeled by 1 to n
- Consider a spanning tree of K_{n}

- We recursively remove the leaf with the smallest label, and write down its neighbor
\rightarrow Stop when there are only two leaves

Prüfer Codes

- The sequence for the above tree is:

2 (remove 1), 4 (remove 3), 2 (remove 4)

- It is easy to check that for a different spanning tree of K_{n}, the sequence will be different
\rightarrow This sequence is called the Prufer code

Prüfer Codes

- On the other hand, given any sequence of length $n-2$, with each entry from 1 to n
\rightarrow there is a unique spanning tree!
- $E x:$ Sequence $=2,4,2$
- Here, the smallest missing number is 1 , and the first in the sequence is 2 , so we know that :

1 is a leaf, and its neighbor is 2

Prüfer Codes

- We also know that 1 will be removed next in the construction of the remaining sequence
\rightarrow the remaining sequence is 4,2 , and now the smallest missing number is 3 , so we know that :

$$
3 \text { is a leaf, and its neighbor is } 4
$$

in the remaining tree

Prüfer Codes

- Next, 3 will be removed in the construction of the remaining sequence
\rightarrow the remaining sequence is 2 , and now the smallest missing number is 4 , so we know that :

$$
4 \text { is a leaf, and its neighbor is } 2
$$

in the remaining tree

Prüfer Codes

- Next, 4 will be removed in the construction of the remaining sequence
\rightarrow as the remaining leaves are 2 and 5
they become neighbors in the remaining tree
\rightarrow we obtain the original tree

