CS5314 Randomized Algorithms

Homework 4
Due: 3:20 pm, June 12, 2008 (before class)

1. (20\%) Let S be a set of elements, and C be a collection of subsets, $S_{1}, S_{2}, S_{3}, \ldots, S_{|C|}$, such that $\left|S_{i}\right|=k \geq 2$ for each i. Suppose the number of subsets, $|C|$, is at most $4^{k-1}-1 .{ }^{1}$
Show that we can color the elements of S with 4 colors such that no S_{i} is monochromatic.
2. (20%) Let F be a family of subsets of $N=\{1,2, \ldots, n\}$. F is called an anti-chain if there are no $A, B \in F$ satisfying $A \subset B$. Let σ be a random permutation of the elements of N.
Let X be the random variable with

$$
X=|\{i:\{\sigma(1), \sigma(2), \ldots \sigma(i)\} \in F\}| .
$$

By considering the expectation of X prove that $|F| \leq\binom{ n}{\lfloor n / 2\rfloor}$.
(Hint: (i) What are the possible values of X ? (ii) F can be partitioned into n parts according to the size of its subsets. Let k_{i} denotes the number of size- i subsets, so that $|F|=k_{1}+k_{2}+\ldots+k_{n}$. Can you relate $\mathrm{E}[X]$ with $\left.k_{1}, k_{2}, \ldots, k_{n} ?\right)$
3. (20%) A tournament is a graph with exactly one directed edge between each pair of vertices. Show that there is a tournament T with n vertices such that T contains at least $n!2^{-(n-1)}$ Hamiltonian paths.
4. (20%) Consider a random graph in $G_{n, p}$, with $p=1 / n$. Let X be the number of triangles in the graph, where a triangle is a clique with three edges. Show that

$$
\operatorname{Pr}(X \geq 1) \leq 1 / 6
$$

and that

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}(X \geq 1) \geq 1 / 7
$$

(Hint: For the second part, use the conditional expectation inequality.)
5. (20\%) Use the general form of the Lovasz local lemma to prove that the symmetric version can be improved by replacing the condition $4 d p \leq 1$ by the weaker condition $e p(d+1) \leq 1$.
6. (Bonus: 10%) A set S is sum-free if for any s_{i} and s_{j} (not necessarily distinct) in S, their sum $s_{i}+s_{j}$ is not in S.
For example, $\{1,3,5,9\}$ is sum-free, but $\{1,2,3\},\{2,4\}$ are not.
Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a set of n positive integers, with $b_{1}<b_{2}<\cdots<b_{n}$. In this question, we want to show that B must contain a sum-free subset with size at least $n / 3$.
(a) Let $p=3 k+2$ be a prime such that $p>b_{n}$. Create a set $C=\{k+1, k+2, \ldots, 2 k+1\}$. Show that C is sum-free, even under modulo- p arithmetic. (That is, for any c_{i} and c_{j} (not necessarily distinct) in C, their sum $c_{i}+c_{j}(\bmod p) \notin C$.)

[^0](b) Suppose we randomly select x with $x \in[1, p-1]$, and calculate $d_{1}, d_{2}, \ldots, d_{n}$ with $d_{i}=x b_{i}(\bmod p)$. Show that
$$
\operatorname{Pr}\left(d_{i} \in C\right)>\frac{|C|}{p-1}>\frac{1}{3}
$$

Hint: If $x \neq x^{\prime}$, can $x b_{i}=x^{\prime} b_{i}$ under modulo- p arithmetic? Hence, conclude that under modulo- p arithmetic,

$$
\left\{b_{i}, 2 b_{i}, \ldots,(p-1) b_{i}\right\}=\{1,2,3, \ldots, p-1\}
$$

(c) Argue that there exists some x^{*} in part (b) such that at least $n / 3$ of the corresponding d_{i} 's are in C.
(d) Let A be the set of b_{i} 's such that $x^{*} b_{i} \in C$. Show that A is sum-free.

[^0]: ${ }^{1}$ In graph theory, a hypergraph is a graph where edges can connect any number of vertices. In our problem, (S, C) is in fact a hypergraph, where S is the set of vertices and C is the set of edges.

