CS5314 RANDOMIZED ALGORITHMS

Homework 4

Due: 3:20 pm, June 12, 2008 (before class)

1. (20%) Let S be a set of elements, and C be a collection of subsets, $S_1, S_2, S_3, ..., S_{|C|}$, such that $|S_i| = k \ge 2$ for each i. Suppose the number of subsets, |C|, is at most $4^{k-1} - 1$.¹

Show that we can color the elements of S with 4 colors such that no S_i is monochromatic.

2. (20%) Let F be a family of subsets of $N = \{1, 2, ..., n\}$. F is called an *anti-chain* if there are no $A, B \in F$ satisfying $A \subset B$. Let σ be a random permutation of the elements of N. Let X be the random variable with

$$X = |\{i : \{\sigma(1), \sigma(2), ... \sigma(i)\} \in F\}|.$$

By considering the expectation of X prove that $|F| \leq {n \choose \lfloor n/2 \rfloor}$.

(Hint: (i) What are the possible values of X? (ii) F can be partitioned into n parts according to the size of its subsets. Let k_i denotes the number of size-*i* subsets, so that $|F| = k_1 + k_2 + \ldots + k_n$. Can you relate E[X] with k_1, k_2, \ldots, k_n ?)

- 3. (20%) A *tournament* is a graph with exactly one directed edge between each pair of vertices. Show that there is a tournament T with n vertices such that T contains at least $n!2^{-(n-1)}$ Hamiltonian paths.
- 4. (20%) Consider a random graph in $G_{n,p}$, with p = 1/n. Let X be the number of triangles in the graph, where a triangle is a clique with three edges. Show that

$$\Pr(X \ge 1) \le 1/6$$

and that

$$\lim_{n \to \infty} \Pr(X \ge 1) \ge 1/7$$

(Hint: For the second part, use the conditional expectation inequality.)

- 5. (20%) Use the general form of the Lovasz local lemma to prove that the symmetric version can be improved by replacing the condition $4dp \leq 1$ by the weaker condition $ep(d+1) \leq 1$.
- 6. (Bonus: 10%) A set S is sum-free if for any s_i and s_j (not necessarily distinct) in S, their sum $s_i + s_j$ is not in S.

For example, $\{1, 3, 5, 9\}$ is sum-free, but $\{1, 2, 3\}$, $\{2, 4\}$ are not.

Let $B = \{b_1, b_2, ..., b_n\}$ be a set of *n* positive integers, with $b_1 < b_2 < \cdots < b_n$. In this question, we want to show that *B* must contain a sum-free subset with size at least n/3.

(a) Let p = 3k+2 be a prime such that $p > b_n$. Create a set $C = \{k+1, k+2, ..., 2k+1\}$. Show that C is sum-free, even under modulo-p arithmetic. (That is, for any c_i and c_j (not necessarily distinct) in C, their sum $c_i + c_j \pmod{p} \notin C$.)

¹In graph theory, a hypergraph is a graph where edges can connect any number of vertices. In our problem, (S, C) is in fact a hypergraph, where S is the set of vertices and C is the set of edges.

(b) Suppose we randomly select x with $x \in [1, p - 1]$, and calculate $d_1, d_2, ..., d_n$ with $d_i = xb_i \pmod{p}$. Show that

$$\Pr(d_i \in C) > \frac{|C|}{p-1} > \frac{1}{3}.$$

Hint: If $x \neq x'$, can $xb_i = x'b_i$ under modulo-*p* arithmetic? Hence, conclude that under modulo-*p* arithmetic,

$${b_i, 2b_i, \dots, (p-1)b_i} = {1, 2, 3, \dots, p-1}.$$

- (c) Argue that there exists some x^* in part (b) such that at least n/3 of the corresponding d_i 's are in C.
- (d) Let A be the set of b_i 's such that $x^*b_i \in C$. Show that A is sum-free.