Exam for Scientific Computing, 2020

14:20-15:20, December 9, 2020

Name:_____ StuID:_____ IndexN:____

1.(10%) Approximate ln(1.5) by using Taylor expansion for f(x) = ln(1+x) with $x \in (-1, 1)$ about x = 0 such that the accuracy is within 10^{-4} .

2.(10%) Let the matrix B and the vector **x** be defined as follows.

$$B = \begin{bmatrix} 3 & 4 & -7 & 1 \\ 5 & -7 & 10 & 3 \\ 2 & -5 & -9 & -4 \\ -8 & 10 & -8 & -5 \end{bmatrix}, \quad \mathbf{x} = [-4, 3, -2, -1]^t.$$

- (a) Find $\|\mathbf{x}\|_1$ and $\|\mathbf{x}\|_{\infty}$, respectively.
- (b) Find $||B||_1$ and $||B||_{\infty}$, respectively.

3.(10%) Write down the matrix H obtained from the following Matlab code.

format rat H=hilb(4)

4.(20%) Give the following Matlab code.

```
A=[1, 2, 3; 2, 6, 10; 3, 14, 28];
b=[1; 0; -8];
format short
X=A\b
```

- (a) Find the *LU*-decomposition for A.
- (b) What does the above Matlab code do?
- (c) What is the output of X?

5.(20%) Let a matrix A be defined as

$$A = \begin{bmatrix} 2 & 2 & 4 \\ -2 & 1 & -1 \\ 4 & -5 & 0 \end{bmatrix}$$

After an implementation of the LU - Decomposition algorithm given below. on the input matrix A. Give the contents of output A.

\heartsuit LU-Decomposition Algorithm

```
for i = 1, 2, \dots, n - 1
for k = i + 1, i + 2, \dots, n
m_{ki} \leftarrow a_{ki}/a_{ii} if a_{ii} \neq 0
a_{ki} \leftarrow m_{ki}
for j = i + 1, i + 2, \dots, n
a_{kj} \leftarrow a_{kj} - m_{ki} * a_{ij}
endfor
endfor
endfor
```

6.(10%) Suppose that a tridiagonal matrix $T \in \mathbb{R}^{n \times n}$ is also diagonally dominant.

- (a) Give an efficient algorithm to do T = LU.
- (b) How many floating-point operations (flops) are needed for your algorithm?

7.(10%) Let

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 5 \\ 8 \\ 3 \end{bmatrix}$$

Find the linear least squares solution for $A\mathbf{x} = \mathbf{b}$.

8.(10%) Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be eigenvalues of $A \in \mathbb{R}^{n \times n}$, show that the trace of matrix A^k is the sum of $\{\lambda_i^k, i = 1, 2, \dots, n\}$, that is, $tr(A^k) = \sum_{i=1}^n \lambda_i^k$.

Exam for Scientific Computing, 2020

Due by 15:50, December 16, 2020

Name:_____ StuID:_____ IndexN:____

- 1.(10%) Apply LU decomposition with partial pivoting and back substitution to solve the following linear system of equations such that the accuracy is within 10^{-4} .
- **2.(20%)** Find the characteristic polynomial of the matrix A given below and compare the roots of the characteristic equation of A with those obtained from the matlab command eig(A).

	-7	3	1	
A =	3	-7	2	
	1	2	5	

3.(10%) Give the nonlinear system of equations with variables x = X(1), y = X(2), z = X(3) that the following Matlab codes attempt to solve.

```
n=3;
X=[1; 1; 1];
Nrun=10;
for k=1:Nrun
  F=[X(1)*X(2)-X(3)^{2}-1; \ldots
  X(1) * X(2) * X(3) - X(1)^{2} + X(2)^{2} - 2; \dots
  \exp(X(1)) - \exp(X(2)) - X(3) - 3];
                                              -2*X(3); ...
  A = [X(2),
                          X(1),
  X(2) * X(3) - 2 * X(1), X(1) * X(3) + 2 * X(2), X(1) * X(3); \dots
  exp(X(1)),
                       \exp(X(2)),
                                          -1];
  s=0.002; % Perturbation to avoid the near singularity
  dX=(A+s*eye(n))\setminus F;
  X=X-dX;
end
format short
[X'; F']
              % Output solution and error (ideally F==0)
```

Answer the following questions.

4.(20%) For $x \in (-1, 1)$, define the Chebyshev polynomial of degree n by

$$T_n(x) = \cos(n\cos^{-1}x) \ \forall \ n \ge 0$$

Denote the inner product by $\langle T_n, T_m \rangle = \int_{-1}^1 T_n(x) T_m(x) \frac{1}{\sqrt{1-x^2}} dx$

- (a) Write down $T_n(x)$ in the polynomial format for $0 \le n \le 4$.
- (b) Show that $\langle T_n, T_m \rangle = 0$ if $n \neq m$.
- (c) Compute $\langle T_0, T_0 \rangle$, and $\langle T_n, T_n \rangle$ for $n \ge 1$.
- (d) Find all of the roots of $T_n(x) = 0$.
- **5.(20%)** Using the nodes $x_0 = 2$, $x_1 = 2.5$, and $x_2 = 4$ to find a quadratic interpolating polynomial $P_2(x)$ for $f(x) = \frac{1}{x}$.
 - (a) Find the Lagrange polynomials $L_{2,0}(x)$, $L_{2,1}(x)$, and $L_{2,2}(x)$.
 - (b) Write $P_2(x)$ in form of Lagrange polynomials.
 - (c) Write $P_2(x)$ in the form of Newton divided difference.
 - (d) If $P_2(x) = \alpha_2 x^2 + \alpha_1 x + \alpha_0$, what are $\alpha_2, \alpha_1, \alpha_0$, respectively?

6.(20%) A natural cubic spline S on [0,2] is defined by

$$S(x) = \begin{cases} S_0(x) = 1 + 2x - x^3, & \text{if } 0 \le x < 1 \\ S_1(x) = a + b(x - 1) + c(x - 1)^2 + d(x - 1)^3, & \text{if } 1 \le x \le 2 \end{cases}$$

Find a, b, c, and d, respectively.