Assignment 3: Computing Eigenvalues/Eigenvectors

- 1. This exercise asks you to write a program based on Jacobi transformations (Givens rotations) to compute eigenvalues and corresponding eigenvectors of real symmetric matrices.
 - (a) Prove or realize that all eigenvalues of a real symmetric matrix are real.
 - (b) Write a C/C++, Java, or Matlab program to compute eigenvalues/eigenvectors with the precision up to 10^{-4} and test the following matrices T and B.
 - (c) Verify your results using Matlab.

	1.0	0.6	0.36	0.216	0.1296			4	-1	0	0	0	
	0.6	1.0	0.6	0.36	0.216			-1	4	-1	0	0	
T =	0.36	0.6	1.0	0.6	0.36	,	B =	0	-1	4	-1	0	
	0.216	0.36	0.6	1.0	0.6			0	0	-1	4	-1	
	0.1296	0.216	0.36	0.6	1.0			0	0	0	-1	4	

2. Implement the following simple version of QR iteration with shift for computing the eigenvalues of a general real matrix $A = [a_{ij}]$.

Repeat

- (a) $\sigma = a_{nn}$
- (b) Compute QR factorization $A \sigma I = QR$
- (c) $A \leftarrow RQ + \sigma I$

Until Convergence

Q1. What convergence test should you use?

- **Q2.** Test your program on the matrices T and B in Problem 1.
- **Q3.** Test your program on the following matrices A, C, and X.

$$A = \begin{bmatrix} 11 & -12 & 8 & -4 \\ 25 & -25 & 16 & -8 \\ -7 & -6 & 2 & 0 \\ -9 & 9 & -8 & 6 \end{bmatrix}, \quad C = \begin{bmatrix} 3 & -3 & 2 & -1 \\ 12 & -12 & 10 & -5 \\ 15 & -15 & 14 & -7 \\ 6 & -6 & 6 & -3 \end{bmatrix}, \quad X = \begin{bmatrix} 4 & 1 & 0 & 0 \\ -1 & 3 & 0 & 0 \\ 0 & 0 & 5 & -1 \\ 0 & 0 & 1 & 5 \end{bmatrix}.$$