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Example 3.4 Orthogonality and Projections. We illustrate these concepts by
continuing with the least squares problem in Examples 3.1 and 3.3. At the solution
=7 = [1236, 1943, 2416], the residual vector,
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is orthogonal to each column of A, i.e., ATr = 0. The orthogonal projector onto
span(A) is given by
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and the orthogonal projector onto span(A)* is given by
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3.3 Sensitivity and Conditioning

We turn now to the sensitivity and conditioning of linear least squares problems.
First, we must extend the notion of matrix condition number to include rectan-
zular matrices. The definition of condition number for a square matrix given in
Section 2.3.3 makes use of the matrix inverse. A nonsquare matrix A does not have
an inverse in the conventional sense, but it is possible to define a pseudoinverse, de-
noted by AT, that behaves like an inverse in many respects (see Exercise 3.32). We
will later see a more general definition that applies to any matrix, but for now we
consider only matrices A with full column rank, in which case AT A is nonsingular
and we define the pseudoinverse of A to be

Al (Al ATUAT
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Trivially, we sec that ATA = I, and from Section 3.2.2 we sec that P = AAT
is an orthogonal projector onto span(A), so that the solution to the least squares
problem Ax = b is given by

xz=A"b

We now define the condition number of an m x n matrix with rank(A) = n to be
cond(A) = [|Afl2 - [|AF[|2-

By convention, cond(A) = co if rank(A) < n. Just as the condition number
of a square matrix measures closeness to singularity, the condition number of a
rectangular matrix measures closeness to rank deficiency.

Whereas the conditioning of a square linear system Az = b depends only on
the matrix A, the conditioning of a least squares problem Az = b depends on the
right-hand-side vector b as well as the matrix A, and thus cond(A) alone does not
suffice to characterize sensitivity. In particular, if b lies near span(A), then a small
perturbation in b changes y = Pb relatively little. But if b is nearly orthogonal to
span(A), on the other hand, then y = Pb itself will be relatively small, so that a
small change in b can cause a relatively large change in y, and hence in the least
squares solution @. Thus, for a given A, we would expect a least squares problem
with a b that yields a large residual (i.e., a poor fit to the data) to be more sensitive
than one with a small residual (i.e., a good fit to the data). An appropriate measure
of the closeness of b to span(A) is the ratio

| Azllz _ llyll2

= cos(f),
e sl

where @ is the angle between b and y (see Fig. 3.2). Thus, we expect greater
sensitivity when this ratio is small, so that 6 is near /2.

We now make a more quantitative assessment of the sensitivity of the solution &
of a least squares problem Az = b, where A has full column rank. For simplicity, we
will consider perturbations in b and A separately. For a perturbed right-hand-side
vector b+ Ab, the perturbed solution is given by the normal equations

AT A(z + Az) = AT (b + Ab).
Because AT Az = ATb, we then have
AT A Az = ATAb,

so that
Ay — (ATA)"lATAb = ATAb.

Taking norms, we obtain

Azl < ATz - [Ab2-
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Dividing both sides by ||z||2, we obtain the bound
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Thus, the condition number for the least squares solution & with respect to pertur-
bations in b depends on cond(A) and also on the angle 6 between b and Az (see
Fig. 3.2). In particular, the condition number is approximately cond(A) when the
residual is small, so that cos(f) &~ 1, but the condition number can be arbitrarily
worse than cond(A) when the residual is large, so that cos(#) ~ 0.

For a perturbed matrix A + E, the perturbed solution is given by the normal
equations :

(A+E)T(A+E)(xz+ Az) = (A+ E)"b.

Noting that AT Az = ATb, dropping second-order terms (i.e., products of small
perturbations), and rearranging, we then have

ATAAz ~ ETb—ETAz— ATEx
ET(b— Ax) - ATEz
ETr — ATEx,

so that
Az~ (ATA)'ETr — (ATA)'ATEx = (ATA)'E"r — A*Ex.
Taking norms, we obtain
lAz]z S I(ATA) 2 - [ Ell2 - [Irll2 + AT ]l2 - | El2 - [l2ll2-

Dividing both sides by ||||2 and using the fact that || A|3:]|(ATA)~![|2 = [cond(A)]?,
we obtain the bound
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Thus, the condition number for the least squares solution z with respect to per-
turbations in A depends on cond(A) and also on the angle 6 between b and Az
(see Fig. 3.2). In particular, the condition number is approximately cond(A) when
the residual is small, so that tan(f) = 0, but the condition number is effectively
squared for a moderate residual, and becomes arbitrarily large when the residual is
larger still. These sensitivity results will not only enable us to assess the quality of
least squares solutions, but will also play an important role in understanding the
relative merits of the various algorithms for computing such solutions numerically.

Example 3.5 Sensitivity and Conditioning. We again illustrate these concepts
by continuing with Examples 3.1, 3.3, and 3.4. The pseudoinverse is given by
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The matrix norms can be computed to obtain
lAlz=2  llA*ll2=1,

so that
cond(A) = [|Allz - |AT ]2 = 2.

From the ratio

Azl _ l1yllz 36408761 9999063,

[Ibll2 [l 3640.8809

we see that the angle 6 between b and y is about 0.001625, which is very tiny, as
expected for a problem with a very close fit to the data. From the small condition
mumber and small angle 6, we conclude that this particular least squares problem
is well-conditioned.

Example 3.6 Condition-Squaring Effect. Consider the matrix and perturba-
tion

o 0 0
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where € < 1, say around \/€mach, for which we have
cond(A4) =1/e,  [|El2/|Allz =«

For the right-hand-side vector b= [1 0 ¢]”, we have ||Azll2/|z]|2 = 0.5, so the
relative perturbation in the solution is about equal to cond(A) times the relative
perturbation in A. There is no condition-squaring effect for this right-hand side
because the residual is small and tan(f) = €, effectively suppressing the condition-
squared term in the perturbation bound.



