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The Linear Least Squares Problems

Many real-world problems could be formulated as solving Ax = b, where A ∈ Rm×n,
x ∈ Rn, b ∈ Rm, with m > n. The linear least squares problem is to find a solution which
minimizes ‖b− Ax‖22.

• Examples of Polynomial Regression

• Existence and Uniqueness

• Normal Equations AtAx = Atb

• Gram-Schmidt Orthogonalization and QR Factorization

• Orthogonal Transforms

Householder Transforms

Jacobi Transforms (Givens Rotations)
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The Linear Least Squares Problems

Consider the problem of determining an x ∈ Rn such that the residual sum of squares
ρ2(x) = ‖b− Ax‖22 is minimized for given b ∈ Rn, A ∈ Rn×n.

✸ Best Line Fit:
Given [xi, yi]

t ∈ R2 for 1 ≤ i ≤ n, find a line which best fits these points. The problem
is equivalent to finding m and b to minimize

f(m, b) =
n
∑

i=1

(yi −mxi − b)2

or to solve
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✸ Best Parabola Fit:
Given [xi, yi]

t ∈ R2 for 1 ≤ i ≤ n, find a parabola which best fits these points. The
problem is equivalent to finding a, b, c to minimize

f(a, b, c) =
n
∑

i=1

(yi − ax2
i − bxi − c)2

or to solve
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An Example of Best Line Fit

1. The respective high school and college GPAs for 20 college seniors as ordered pairs (x, y)
are

(3.75, 3.19) (3.45, 3.34) (2.87, 2.23) (3.60, 3.46) (3.42, 2.97)
(4.00, 3.79) (2.65, 2.55) (3.10, 2.50) (3.47, 3.15) (2.60, 2.26)
(4.00, 3.76) (2.30, 2.11) (2.47, 2.11) (3.36, 3.01) (3.60, 2.92)
(3.65, 3.09) (3.30, 3.05) (2.58, 2.63) (3.80, 3.22) (3.79, 3.27)

(a) Verify that x̄= 3.2880, ȳ =2.9305, s2x = 0.283, s2y = 0.260, and r = 0.92.

(b) The equation of best fitting line is y = 0.8822x+ 0.0298.

(c) Plot the 20 points and the best fitting line on the same graph.
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Figure 1: Plot of A Best Fitted Line
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An Example of Best Parabola Fit

2. A time series of 21 data points (t, y) are given below.

t 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
y 2.9 2.7 4.8 5.3 7.1 7.6 7.7 7.6 9.4 9.0 9.6
t 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
y 10.0 10.2 9.7 8.3 8.4 9.0 8.3 6.6 6.7 4.1

(a) The best fitted parabola is y = −0.238t2 + 2.67t+ 2.18

(b) Plot the 21 points and the best fitting parabola on the same graph.
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A Best Fitted Parabola

Figure 2: Plot of A Best Fitted Parabola
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Existence and Uniqueness

Theorem: The linear least squares problem of minimizing ‖b−Ax‖2 always has a solution.
The solution is unique iff Null(A) = {0}.

Corollary: Let x be a linear least squares solution of minimizing ‖b − Ax‖2, then the
residual vector r = b−Ax satisfies the following normal equations.

Atr = At(b−Ax) = 0 or AtAx = Atb

Theorem: Ax = b has a solution iff b ∈ R(A).

If the columns ofA are linearly independent, thenAtA is invertible and x = (AtA)−1Atb.
The projection of b onto the column space of matrix A is p = A(AtA)−1Atb.

Example:

A =
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Theorem: If A ∈ Rm×n has rank n (n ≤ m), the normal equations AtAx = Atb has a
unique solution x̂ = (AtA)−1Atb and x̂ is the unique LLS solution to Ax = b.
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Orthonormal Basis and Orthogonal Matrices

Definition: The vectors u1,u2, · · · ,un are orthonormal if ‖uk‖2 = 1, 1 ≤ k ≤ n, and
〈ui,uj〉 = 0 ∀ i 6= j.

Definition: An orthogonal matrix is simply a matrix with orthonormal columns. That is,
Q ∈ Rm×k is orthogonal if QtQ = Ik. In particular, if m = k, then Q−1 = Qt.

♣ Some Properties of Orthogonal Matrices

(a) The columns of Q form an orthonormal basis for Rn

(b) QtQ = I and Q−1 = Qt

(c) ‖Qx‖2 = ‖x‖2, ∀ x ∈ Rn

(d) 〈Qx, Qy〉 = 〈x,y〉, ∀ x,y ∈ Rn

(e) ‖QA‖2 = ‖A‖2, ∀ A ∈ Rn×k

(f) det(Q) = |Q| = 1 or − 1

♣ Least Squares and Orthonormal Sets

Theorem: If the column vectors of A ∈ Rm×n form an orthonormal set of vectors in Rm,
then AtA = I and the LLS solution to Ax = b is x̂ = (AtA)−1Atb = Atb.

Theorem: Let S be a subspace of an inner product vector space V and x ∈ V . Let
{u1,u2, · · · ,un} be an orthonromal basis for S. If

p =
n
∑

i=1

ciui, where ci = 〈x,ui〉

Then, (x− p) ∈ S⊥

Proof: 〈x− p, ui〉 = 〈x, ui〉 − 〈p, ui〉 = ci − ci = 0
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Gram-Schmidt Orthogonalization Process

Let V = {a1, a2, · · · , an} be a set of independent vectors. The Gram-Schmidt process
transforms the set V to an orthonormal set of U = {q1,q2, · · · ,qn} such that

span(q1,q2, · · · ,qn) = span(a1, a2, · · · , an)

(a) q1 ← a1/‖a1‖2

(b) t2 = a2 − 〈a2,q1〉q1; q2 ← t2/‖t2‖2

(c) tk = ak −
∑k−1

i=1 〈ak,qi〉qi; qk ← tk/‖tk‖2 for 3 ≤ k ≤ n.

Example:
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Example (QR Factorization):

A = [a1, a2, a3] =
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Example:

A = [a1, a2, a3] = [q1, q2, q3]





















qt
1a1 qt

1a2 qt
1a3

0 qt
2a2 qt

2a3

0 0 qt
3a3





















= QR
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QR Factorization

Theorem: Every A ∈ Rm×n with linearly independent columns can be factored into A =
QR, where Q is orthogonal, R is upper-∆ and invertible.

Proof: Successively applied Householder matrices {H ′
js} on A, we can get H1H2 · · ·HmA =

R, where , R is upper-∆. If R is not invertible, then ∃ x ∈ Rn such that Rx = 0, then
QRx = 0 and hence Ax = 0 which contradicts that A has linearly independent column
vectors.

Note: Suppose A = QR, the LLS solution of Ax = b is reduced to solving a triangular
system of equations Rx = Qtb.

Example:

A =



























1 −2 −1

2 0 1

2 −4 2

4 0 0



























=



























0.2 −0.4 −0.8

0.4 0.2 0.4

0.4 −0.8 0.4

0.8 0.4 −0.2
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0 4 −1

0 0 2

















= QR

Let b = [−1.4, 0.2, 1.2,−1.6]t. By solving Rx = Qtb, we have x = [−0.4, 0, 1]t for the LLS
solution of Ax = b.
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Householder Transforms

♣ A Householder transform (matrix) can be defined as

H = I − 2uut, where u ∈ Rn with ‖u‖2 = 1

♣ A Householder matrix H is symmetric, orthogonal, and det(H) = −1

Theorem: Let x = [x1, x2, · · · , xn]
t ∈ Rn and ‖x‖2 = α =

√

x2
1 + x2

2 + · · ·+ x2
n, define

v = x+ αe1 with ‖v‖2 = r and u = v

r
. If H = I − 2uut, then Hx = −‖x‖2e1 = −αe1.

Proof: r2 = vtv =
∑n

i=1 v
2
i = (α + x1)

2 +
∑n

j=2 x
2
j , then r2 = 2(α2 + αx1). On the other

hand, vtx =
∑n

i=1 vixi = (α + x1)x1 +
∑n

j=2 vjxj, then vtx = ‖x‖22 + αx1 = α2 + αx1.
Thus

Hx = (I − 2uut)x

=
(

I − 2 · vvt

vtv

)

x

= x− 2 · (α2+αx1)
2(α2+αx1)

· v

= x− v

= −αe1 = − ‖x‖2e1

✷ Example: Let x = [3, 1, 5, 1]t, then ‖x‖2 =
√
32 + 12 + 52 + 12 = 6. Define v = x +

‖x‖2e1, and let u = v/‖v‖2, then

H = I − 2uut =
1

54
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Givens Rotations (Jacobi Transforms)

J(i, k; θ) =
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Jhh = 1 if h 6= i or h 6= k, where i < k

Jii = Jkk = c = cos θ

Jki = −s = − sin θ, Jik = s = sin θ

Let x,y ∈ Rn, then y = J(i, k; θ)x implies that

yi = cxi + sxk

yk = −sxi + cxk
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Sensitivity and Conditioning

Define Cond(A) = ‖A‖2 · ‖A+‖2, where for A ∈ Rm×n with rank(A) = n < m and
A+ = (AtA)−1At. Let span(A) be the column space of matrix A, an appropriate measure
of the closeness of b to span(A) is the ratio

‖Ax‖2
‖b‖2

=
‖y‖2
‖b‖2

= cos(θ),

where θ is the angle between y and b.

♣ Analysis of the sensitivity of LLS solution to Ax = b with rank(A) = n < m

AtA(x+∆x = At(b+∆b) and AtA∆x = At∆b

Then
∆x = (AtA)−1At∆b = A+∆b and ‖∆x‖2 ≤ ‖A+‖2 · ‖∆b‖2

Thus
‖∆x‖2
‖x‖2

≤ ‖A+‖2 ·
‖∆b‖2
‖x‖2

≤ Cond(A) · 1

cos(θ)
· ‖∆b‖2
‖b‖2

On the other hand,

(A+ E)t(A+ E)(x+∆x) = (A+ E)tb and AtA∆x = At∆b

By dropping the 2nd-order terms, we have

AtA∆x ≈ Etb−EtAx− AtEx = Et(b− Ax)− AtEx = Etr−AtEx

∆x ≈ (AtA)−1Etr− (AtA)−1AtEx = (AtA)−1Etr−A+Ex

Taking norms to obtain

‖∆x‖2 ≤ ‖(AtA)−1‖2 · ‖E‖2 · ‖r‖2 + ‖A+‖2 · ‖E‖2 · ‖x‖2

Thus
‖∆x‖2
‖x‖2

≤
(

[Cond(A)]2tan(θ) + Cond(A)
)

· ‖E‖2‖A‖2

♣ Examples 3.5 and 3.6 on Page 116
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Spectrum Decomposition for Symmetric Matrices

Schur’s Theorem: ∀ A ∈ Rn×n, ∃ an orthogonal matrix U such that U tAU = T is upper-
∆. The eigenvlues must be shared by the similarity matrix T and appear along its
main diagonal.

Hint: By induction, suppose that the theorem has been proved for all matrices of order
n − 1, and consider an matrix A ∈ Rn×n with Ax = λx and ‖x‖2 = 1, then ∃ a
Householder matrix H1 such that H1x = βe1, e.g., β = −‖x‖2, hence

H1AH
t
1e1 = H1A(H

−1
1 e1) = H1A(β

−1x) = H1β
−1Ax = β−1λ(H1x) = β−1λ(βe1) = λe1

Thus,

H1AH
t
1 =

















λ | ∗

− −− | − − −

O | A(1)

















Spectrum Decomposition Theorem: Every real symmetric matrix can be diagonalized
by an orthogonal matrix.

✸ QtAQ = Λ or A = QΛQt =
∑n

i=1 λiqiq
t
i

Definition: A symmetric matrix A ∈ Rn×n is nonnegative definite if xtAx ≥ 0 ∀ x ∈ Rn.

Definition: A symmetric matrix A ∈ Rn×n is positive definite if xtAx > 0 ∀ x ∈ Rn,
x 6= 0.
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Singular Value Decomposition

Singular Value Decomposition Theorem: Each matrix A ∈ Rm×n can be decom-
posed as A = UΣV t, where both U ∈ Rm×m and V ∈ Rn×n are orthogonal. Moreover,
Σ ∈ Rm×n = diag[σ1, σ2, . . . , σk, 0, . . . , 0] is essentially diagonal with the singular
values satisfying σ1 ≥ σ2 ≥ . . . ≥ σk > 0.

✸ A = UΣV t =
∑k

i=1 σiuiv
t
i

Examples:

A =







2 −1

−1 2






, B =

















0 1 0

1 0 0

0 0 1

















, C =

















1 1

1 1

0 0


















