The Linear Least Squares Problems

Many real-world problems could be formulated as solving Ax = b, where A € R™*",
x € R", b € R™, with m > n. The linear least squares problem is to find a solution which
minimizes [|b — Ax||3.

e Examples of Polynomial Regression

e Existence and Uniqueness

e Normal Equations A’Ax = A'b

e Gram-Schmidt Orthogonalization and QR Factorization

e Orthogonal Transforms

Householder Transforms

Jacobi Transforms (Givens Rotations)



The Linear Least Squares Problems

Consider the problem of determining an x € R" such that the residual sum of squares
p*(x) = ||b — Ax||3 is minimized for given b € R", A € R™*".

<& Best Line Fit:
Given [z, ]t € R? for 1 < i < n, find a line which best fits these points. The problem
is equivalent to finding m and b to minimize

fm,b) = (y; — ma; — b)?
i=1
or to solve
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<& Best Parabola Fit:
Given [z;,y;]' € R? for 1 < i < n, find a parabola which best fits these points. The
problem is equivalent to finding a, b, ¢ to minimize

n
f(av b7 C) = Z(yl - CLIL'? - bxl - 0)2
i=1
or to solve
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An Example of Best Line Fit

1. The respective high school and college GPAs for 20 college seniors as ordered pairs (z, y)
are

(3.75, 3.10) (3.45, 3.34) (2.87,2.23) (3.60, 3.46) (3.42, 2.97)
(4.00, 3.79) (2.65, 2.655) (3.10, 2.50) (3.47, 3.15) (2.60, 2.26)
(4.00, 3.76) (2.30, 2.11) (247, 211) (3.36,3.01) (3.60, 2.92)
(3.65, 3.09) (3.30,3.05) (258, 2.63) (3.80,3.22) (3.79, 3.27)

(a) Verify that 2= 3.2880, § =2.9305, s3 = 0.283, s, = 0.260, and r = 0.92.
(b) The equation of best fitting line is y = 0.8822x + 0.0298.
(c) Plot the 20 points and the best fitting line on the same graph.

3.8

3.6

3.4

3.2

2.8

2.6

2.4

2.2

Figure 1: Plot of A Best Fitted Line



An Example of Best Parabola Fit

2. A time series of 21 data points (¢,y) are given below.

t| 00 05 10 15 20 25 3.0 35 40 45 5.0
y| 29 27 48 53 71 76 77 76 94 9.0 9.6
t] 55 6.0 65 70 75 80 85 90 95 10.0
y|10.0 102 9.7 83 84 9.0 83 6.6 6.7 4.1

(a) The best fitted parabola is y = —0.238% + 2.67t + 2.18

(b) Plot the 21 points and the best fitting parabola on the same graph.

A Best Fitted Parabola

Figure 2: Plot of A Best Fitted Parabola



Existence and Uniqueness

Theorem: The linear least squares problem of minimizing ||b— Ax||, always has a solution.
The solution is unique iff Null(A) = {0}.

Corollary: Let x be a linear least squares solution of minimizing ||b — Ax||2, then the
residual vector r = b — Ax satisfies the following normal equations.

Alr = A'(b — Ax) =0 or A'Ax= A'b

Theorem: Ax = b has a solution iff b € R(A).

If the columns of A are linearly independent, then A*A is invertible and x = (A*A)~*A'b.
The projection of b onto the column space of matrix A is p = A(A'A)"1A'b.

Ezxample:
1 2 4 4
2 5 2
A=1|1 3|, b=|5|, A'A= , X = ., P=15
5 13 1
00 6 0

Theorem: If A € R™™ has rank n (n < m), the normal equations A’Ax = A'b has a
unique solution x = (A*A)"*A'b and x is the unique LLS solution to Ax = b.



Orthonormal Basis and Orthogonal Matrices

Definition: The vectors uj, uy,---,u, are orthonormal if [[uglls = 1, 1 < k < n, and
(uj,u;) =0V i#j.

Definition: An orthogonal matriz is simply a matrix with orthonormal columns. That is,
Q € R™* is orthogonal if Q'Q = I.. In particular, if m = k, then Q7' = Q.

& Some Properties of Orthogonal Matrices

(a) The columns of @ form an orthonormal basis for R"
(b) QQ=Tand Q' = Q'

() [[@xll2 = [[x[l2, ¥VxeR"

(d) (@x,Qy) = (x,y), Vx,y € R

(e) [QAll2 = [|A]2, ¥ A€ R™*

(£) det(Q) = Q=1 or —1

& Least Squares and Orthonormal Sets

Theorem: If the column vectors of A € R™ "™ form an orthonormal set of vectors in R™,

then A'A =T and the LLS solution to Ax =b is x = (A'A)"1A'b = A'b.

Theorem: Let S be a subspace of an inner product vector space V and x € V. Let
{uy,uy,---,u,} be an orthonromal basis for S. If

n
p= Zciui, where ¢; = (x,u;)
i=1

Then, (x — p) € S+

Proof: (x —p, w;) = (x, ;) = (p, w;) =¢;—¢; =0



Gram-Schmidt Orthogonalization Process

Let V = {aj,ay,---,a,} be a set of independent vectors. The Gram-Schmidt process

transforms the set V' to an orthonormal set of U = {qi1,qQ2, -+, dn} Such that

Spa’n(qlv qz, -, qn) = Span(ala ag, -, an)

(a) a1 < ai/[ail
(b) ta =as — (az,q1)ai; Q2 < t2/[t2]2
(c) tp =a; — Z?:_f(ak,q@)(lz; ar < t/[[tell2 for 3 <k <n.

Example:

1 1

[\
—_

2

I
)
Q
[\

|
e}
L
w

|
—_

—_
[a]
e}
=
I
Si-
— )
-
I
Sl

Example (QR Factorization):

112 5 7 0] v2
A:[al, g, ag]: 0 0 1 = 0 0 1 0
1 —1

Example:
qt131 (ﬁaQ (ﬁas
0 ta ta

A: [a17 ag, a3] = [qla q27 q3] q2 ? q2 K
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QR Factorization

Theorem: Fvery A € R™*™ with linearly independent columns can be factored into A =
QR, where Q) is orthogonal, R is upper-A and invertible.

Proof: Successively applied Householder matrices {H]‘S} on A, we can get H{Hy --- H, A =
R, where , R is upper-A. If R is not invertible, then 3 x € R" such that Rx = 0, then
QRx = 0 and hence Ax = 0 which contradicts that A has linearly independent column
vectors.

Note: Suppose A = QR, the LLS solution of Ax = b is reduced to solving a triangular
system of equations Rx = Q'b.

Example:
(1 -2 =1 ] [02 —04 —08]
5 —2 1
2 0 1 04 02 04
A= — 0 4 —1|=0QR
2 —4 2 04 —0.8 04
0 0 2
4 0 0 0.8 04 —0.2

Let b =[-1.4,0.2,1.2, —1.6]". By solving Rx = Q'b, we have x = [—0.4,0, 1] for the LLS
solution of Ax = b.



Householder Transforms

& A Householder transform (matriz) can be defined as

H =1-2uu', whereu e R" with |july =1

& A Householder matriz H is symmetric, orthogonal, and det(H) = —1

Theorem: Let x = [x1,29, -, 2,])" € R and ||x]|s = a = \/x%+x§+---+x%, define

v =x+ ae; with [|[v|]s =7 andu=X. If H=1—2ud, then Hx = —||x||,e; = —ae;.

-

Proof: r* = viv = Y7 0} = (o + 21)* + )y 23, then r* = 2(o® + axy). On the other

hand, vix = Y7 viry = (a + 1)1y + )y v515, then vix = [|x||5 + axy = o + oy
Thus
Hx = (I —2uu')x

= (I -2 %’i) X

o (a®4axy) .

= x—2 2(042-‘,-049611)

= x—V

= —ae; = — [|x]2€1

O Example: Let x = [3,1,5,1]%, then ||x||s = V32 +12+52+12 = 6. Define v = x +
|x||2€1, and let u = v/||v||2, then

—27 -9 —-45 -9 —6
o1 -9 53 -5 -1 0
H:I—Zuu:5—4 , and Hx=
—45 =5 29 =5 0
| -9 -1 -5 53 ] 0




Givens Rotations (Jacobi Transforms)

J(i, k;0) =

Jwn=11if h#i or h # k, wherei < k

Jii = Jp = ¢ = cos 6

Jyi = —s = —sinb, J;, = s =sinf

0

0
c S 0
—S c 0

0
0 0 I

Let x,y € R", then'y = J(i, k; 0)x implies that

Yi = CT; + STk,

Y = —ST; + cxy

_ X4 — Tk
C = L S =
2,27 2,27
\/$i+xk \/$i+xk

R
2 cos 6
X = ,
3 sin 6
_4_

|

1/V5
2/v5

], then J(2,4;0)x =
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Sensitivity and Conditioning

Define Cond(A) = ||Al|2 - ||AT||2, where for A € R™™ with rank(A) = n < m and
AT = (A'A)7TAL. Let span(A) be the column space of matriz A, an appropriate measure
of the closeness of b to span(A) is the ratio

[Ax[la _ llyll2
Ibll2 bl

= cos(0),

where 0 is the angle between y and b.
& Analysis of the sensitivity of LLS solution to Ax = b with rank(A) =n <m

A"A(x + Ax = A'(b+ Ab) and A'AAx = A'Ab

Then
Ax = (A'A)TA'Ab = ATAb  and || Ax]|ls < [|AT]2 - ||Ab],
fhus 1ax| | Ab| 1 Jab]
Xl||2 2 2
< At L2Rl gy L
L > Tl os@ bls

On the other hand,
(A+ EY(A+ E)(x+ Ax) = (A+ E)'b and A'AAx = A'Ab
By dropping the 2nd-order terms, we have

A"AAx ~ E'b — E'Ax — A'Ex = E'(b — Ax) — A'Ex = E'r — A'Ex

Ax ~ (A'A)'Elr — (A'A)TA'Ex = (A'"A)'E'r — ATEx
Taking norms to obtain
1Al < [(A"A) Mz - (B2 - el + [AT[l2 - 1B - [1x])2
Thus

1B,
Al

< ([C’ond(A)]Qtan(H) + C’ond(A))

& Examples 3.5 and 3.6 on Page 116
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Spectrum Decomposition for Symmetric Matrices

Schur’s Theorem: V A € R™", 3 an orthogonal matrix U such that U'AU = T is upper-
A. The eigenvlues must be shared by the similarity matrix 7" and appear along its
main diagonal.

Hint: By induction, suppose that the theorem has been proved for all matrices of order
n — 1, and consider an matrix A € R™" with Ax = Ax and [|x|s = 1, then 3 a
Householder matrix H; such that Hix = fe;, e.g., 5 = —||x||2, hence
HlAerl = HlA(Hl_lel) = HlA(B_1X) = Hlﬁ_lAX = B_lA(H1X) = 6_1>\(681) = )\e1

Thus,

0] | AW

Spectrum Decomposition Theorem: Every real symmetric matrix can be diagonalized
by an orthogonal matrix.

O Q'AQ = Aor A=QAQ"' =YL, Niqiq;
Definition: A symmetric matrix A € R™™" is nonnegative definite if x*Ax > 0V x € R".

Definition: A symmetric matrix A € R™ " is positive definite if x’Ax > 0V x € R",

x # 0.
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Singular Value Decomposition

Singular Value Decomposition Theorem: Each matrix A € R™*" can be decom-
posed as A = UXV?, where both U € R™*™ and V € R™*" are orthogonal. Moreover,
Y € R™" = diagloy,09,...,0k0,...,0] is essentially diagonal with the singular
values satisfying o1 > 09 > ... > 0 > 0.

O A=UxVt=%F  ouvt

Ezxamples:



