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Problems of Eigenvalues/Eigenvectors

♣ Reveiw of Eigenvalues and Eigenvectors

♣ Gerschgorin’s Disk Theorem

♣ Power and Inverse Power Methods

♣ Jacobi Transform for Symmetric Matrices

♣ Singular Value Decomposition with Applications

♣ QR Iterations for Computing Eigenvalues

♣ Other Topics with Applications



2

Definition and Examples

Let A ∈ Rn×n. If ∃ v 6= 0 such that Av = λv, λ is called an eigenvalue of matrix A,
and v is called an eigenvector corresponding to (or belonging to) the eigenvalue λ. Note
that v is an eigenvector implies that αv is also an eigenvector for all α 6= 0. We define the
Eigenspace(λ) as the vector space spanned by all of the eigenvectors corresponding to the
eigenvalue λ.

Examples:

1. A =







2 0

0 1






, λ1 = 2, u1 =







1

0






, λ2 = 1, u2 =







0

1






.

2. A =







2 1

0 1





, λ1 = 2, u1 =







1

0





, λ2 = 1, u2 =







−1

1





.

3. A =







3 1

1 3





, λ1 = 4, u1 =







1

1





, λ2 = 2, u2 =







−1

1





.

4. A =







0 −1

1 0






, λ1 = j, u1 =







1

j






, λ2 = −j, u2 =







j

1






, j =

√
−1.

5. B =







3 0

8 −1





, then λ1 = 3, u1 =









1√
5

2√
5









; λ2 = −1, u2 =







0

1





.

6. C =







3 −1

−1 3





, then τ1 = 4, v1 =









1√
2

−1√
2









; τ2 = 2, v2 =









1√
2

1√
2









.

Ax = λx ⇒ (λI −A)x = 0, x 6= 0 ⇒ det(λI −A) = P (λ) = 0.
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Gershgorin’s Disk Theorem

Note that ‖ui‖2 = 1 and ‖vi‖2 = 1 for i = 1, 2. Denote U = [u1,u2] and V = [v1,v2],
then

U−1BU =







3 0

0 −1





 , V −1CV =







4 0

0 2







Note that V t = V −1 but U t 6= U−1.
Let A ∈ Rn×n, then det(λI − A) is called the characteristic polynomial of matrix A.

♣ Fundamental Theorem of Algebra

A real polynomial P (λ) = λn + an−1λ
n−1 + · · ·+ a0 of degree n has n roots {λi} such

that

P (λ) = (λ− λ1)(λ− λ2) · · · (λ− λn) = λn −
(

n
∑

i=1

λi

)

λn−1 + · · ·+ (−1)n
(

n
∏

i=1

λi

)

• ∑n
i=1 λi =

∑n
i=1 aii = tr(A)

• ∏n
i=1 λi = det(A)

♣ Gershgorin’s Disk Theorem

Every eigenvalue of matrix A ∈ Rn×n lies in at least one of the disks

Di = {x | |x− aii| ≤
∑

j 6=i

|aij|}, 1 ≤ i ≤ n

Example: B =

















3 1 1

0 4 1

2 2 5

















, λ1, λ2, λ3 ∈ D1 ∪ D2 ∪ D3, where D1 = {z | |z − 3| ≤

2}, D2 = {z | |z − 4| ≤ 1}, D3 = {z | |z − 5| ≤ 4}. Note that λ1 = 6.5616, λ2 =

3.0000, λ3 = 2.4383.

✷ A matrix is said to be diagonally dominant if
∑

j 6=i |aij | < |aii|, ∀ 1 ≤ i ≤ n.

✸ A diagonally dominant matrix is invertible.
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Theorem: Let A, P ∈ Rn×n, with P nonsingular, then λ is an eigenvalue of A with
eigenvector x iff λ is an eigenvalue of P−1AP with eigenvector P−1x.

Theorem: Let A ∈ Rn×n and let λ be an eigenvalue of A with eigenvector x. Then

(a) αλ is an eigenvalue of matrix αA with eigenvector x

(b) λ− µ is an eigenvalue of matrix A− µI with eigenvector x

(c) If A is nonsingular, then λ 6= 0 and λ−1 is an eigenvalue of A−1 with eigenvector x

Definition: A matrix A is similar to B, denote by A ∼ B, iff there exists an invertible
matrix U such that U−1AU = B. Furthermore, a matrix A is orthogonally similar to
B, iff there exists an orthogonal matrix Q such that QtAQ = B.

Theorem: Two similar matrices have the same eigenvalues, i.e., A ∼ B ⇒ λ(A) = λ(B).
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Diagonalization of Matrices

Theorem: Suppose A ∈ Rn×n has n linearly independent eigenvectors v1, v2, . . ., vn

corresponding to eigenvalues λ1, λ2, . . ., λn. Let V = [v1, v2, . . . , vn], then
V −1AV = diag[λ1, λ2, . . . , λn].

✸ If A ∈ Rn×n has n distinct eigenvalues, then their corresponding eigenvectors are linearly
independent. Thus, any matrix with distinct eigenvalues can be diagonalized.

✸ Not all matrices have distinct eigenvalues, therefore not all matrices are diagonalizable.

Spectrum Decomposition Theorem*

Every real symmetric matrix can be diagonalized.

Nondiagonalizable Matrices

A =

















2 1 0

0 2 1

0 0 2

















, B =

















1 0 0

1 2 0

−3 5 2

















Diagonalizable Matrices

C =







1 1

1 1






, D =







2 0

0 2






, E =

















0 0 −2

1 2 1

1 0 3

















, K =







0 −1

1 0







Theorem: Let {(λi,vi), 1 ≤ i ≤ n} be eigenvalues/eigenvectors of matrix A ∈ Rn×n, then
Akvj = λk

jvj , ∀ k ≥ 1. Moreover, if {vi} are linearly independent, then ∀y ∈ Rn can
be written in the form

y = c1v1 + c2v2 + · · ·+ cnvn

Then
Aky = λk

1c1v1 + λk
2c2v2 + · · ·+ λk

ncnvn.

If |λ1| > |λi|, ∀2 ≤ i ≤ n, and c1 6= 0, then Aky→ αv1 as k →∞.
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A Markov Process

Suppose that 10% of the people outside Taiwan move in, and 20% of the people indside
Taiwan move out in each year. Let yk and zk be the population at the end of the k − th
year, outside Taiwan and inside Taiwan, respectively. Then we have







yk

zk





 =







0.9 0.2

0.1 0.8













yk−1

zk−1





 ⇒ λ1 = 1.0, λ2 = 0.7







yk

zk





 =







0.9 0.2

0.1 0.8







k 





y0

z0





 =
1

3







2 1

1 −1













1k 0

0 (0.7)k













1 1

1 −2













y0

z0







✷ A Markov matrix A is nonnegative with each colume adding to 1.

(a) λ1 = 1 is an eigenvalue with a nonnegative eigenvector x1.

(b) The other eigenvalues satisfy |λi| ≤ 1.

(c) If any power of A has all positive entries, and the other |λi| < 1. Then Aku0

approaches the steady state of u∞ which is a multiple of x1 as long as the projection
of u0 in x1 is not zero.

✸ Check Perron-Fröbenius theorem in Strang’s book.
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Differential Equations and eA

♣ eA = I + A
1!
+ A2

2!
+ · · ·+ Am

m!
+ · · ·

♣ du
dt

= −λu ⇒ u(t) = e−λtu(0)

♣ du
dt

= −Au =







−2 1

1 −2





u ⇒ u(t) = e−tAu(0)

♣ A = UΛU t for an orthogonal matrix U , then

eA = UeΛU=Udiag[eλ1 , eλ2, . . . , eλn ]U t

♣ Solve x′′′ − 3x′′ + 2x′ = 0.

Let y = x′, z = y′ = x′′, and let u = [x, y, z]t. The problem is reduced to solving

u′ = Au =

















0 1 0

0 0 1

0 −2 3

















u

Then

u(t) = etAu(0) =



















1√
21

1√
3

1

2√
21

1√
3

0

4√
21

1√
3

0



































e2t 0 0

0 et 0

0 0 1

































0 −2.2193 2.2193

0 3.4641 −1.7321

1 1.5000 0.5000

















u(0)
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Similarity transformation and triangularization

Schur’s Theorem: ∀ A ∈ Rn×n, ∃ an orthogonal matrix U such that U tAU = T is upper-
∆. The eigenvlues must be shared by the similarity matrix T and appear along its
main diagonal.

Hint: By induction, suppose that the theorem has been proved for all matrices of order
n − 1, and consider A ∈ Rn×n with Ax = λx and ‖x‖2 = 1, then ∃ a Householder
matrix H1 such that H1x = βe1, e.g., β = −‖x‖2, hence
H1AH

t
1e1 = H1A(H

−1
1 e1) = H1A(β

−1x) = H1β
−1Ax = β−1λ(H1x) = β−1λ(βe1) = λe1

Thus,

H1AH
t
1 =

















λ | ∗

− −− | − − −

O | A(1)

















Spectrum Decomposition Theorem: Every real symmetric matrix can be diagonalized
by an orthogonal matrix.

✸ QtAQ = Λ or A = QΛQt =
∑n

i=1 λiqiq
t
i

Definition: A symmetric matrix A ∈ Rn×n is nonnegative definite if xtAx ≥ 0 ∀ x ∈ Rn,
x 6= 0.

Definition: A symmetric matrix A ∈ Rn×n is positive definite if xtAx > 0 ∀ x ∈ Rn,
x 6= 0.

Singular Value Decomposition Theorem: Each matrix A ∈ Rm×n can be decom-
posed as A = UΣV t, where both U ∈ Rm×m and V ∈ Rn×n are orthogonal. Moreover,
Σ ∈ Rm×n = diag[σ1, σ2, . . . , σk, 0, . . . , 0] is essentially diagonal with the singular
values satisfying σ1 ≥ σ2 ≥ . . . ≥ σk > 0.

✸ A = UΣV t =
∑k

i=1 σiuiv
t
i

Example:

A =







2 −1

−1 2






, B =

















0 1 0

1 0 0

0 0 1

















, C =

















1 1

1 1

0 0



















9

A Jacobi Transform (Givens Rotation)

J(i, k; θ) =





























































1 · · · · · · · 0

0
. . . · · · · · ... 0

0 · c · · · s · 0

· ... · . . . · ... ·

0 · −s · · · c · 0

0
... · · · · · . . . 0

· · 0 · · · 0 · 1





























































Jhh = 1 if h 6= i or h 6= k, where i < k

Jii = Jkk = c = cos θ

Jki = −s = − sin θ, Jik = s = sin θ

Let x,y ∈ Rn, then y = J(i, k; θ)x implies that

yi = cxi + sxk

yk = −sxi + cxk

c = xi√
x2
i
+x2

k

, s = xk√
x2
i
+x2

k

,

x =



























1

2

3

4



























,







cos θ

sin θ





 =







1/
√
5

2/
√
5





 , then J(2, 4; θ)x =



























1

√
20

3

0
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Jacobi Transforms (Givens Rotations)

The Jacobi method consists of a sequence of orthogonal similarity transformations such
that

J t
KJ

t
K−1 · · ·J t

2J
t
1AJ1J2 · · ·JK−1JK = Λ

where each Ji is orthogonal, so is Q = J1J2 · · ·JK−1JK .

Each Jacobi transform (Given rotation) is just a plane rotation designed to annihilate one

of the off-diagonal matrix elements. Let A = (aij) be symmetric, then

B = J t(p, q, θ)AJ(p, q, θ), where

brp = carp − sarq for r 6= p, r 6= q

brq = sarp + carq for r 6= p, r 6= q

bpp = c2app + s2aqq − 2scapq

bqq = s2app + c2aqq + 2scapq

bpq = (c2 − s2)apq + sc(app − aqq)

To set bpq = 0, we choose c, s such that

α = cot(2θ) =
c2 − s2

2sc
=

aqq − app
2apq

(1)

For computational convenience, let t = s
c
, then t2 + 2αt − 1 = 0 whose smaller root (in

absolute sense) can be computed by

t =
sgn(α)√

α2 + 1 + |α|
, and c =

1√
1 + t2

, s = ct, τ =
s

1 + c
(2)

Remark

bpp = app − tapq

bqq = aqq + tapq

brp = arp − s(arq + τarp)

brq = arq + s(arp − τarq)
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Algorithm of Jacobi Transforms to Diagonalize A

A(0) ← A

for k = 0, 1, · · · , until convergence

Let |a(k)pq | = Maxi<j{|a(k)ij |}

Compute

αk =
a
(k)
qq −a

(k)
pp

2a
(k)
pq

, solve cot(2θk) = αk for θk.

t = sgn(α)√
α2+1+|α|

c = 1√
1+t2

, , s = ct

τ = s
1+c

A(k+1) ← J t
kA

(k)Jk, where Jk = J(p, q, θk)

endfor
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Convergence of Jacobi Algorithm to Diagonalize A

Proof:

Since |a(k)pq | ≥ |a
(k)
ij | for i 6= j, p 6= q, then

|a(k)pq |2 ≥ off(A(k))/2N , where N = n(n−1)
2

, and

off(A(k)) =
∑n

i 6=j

(

a
(k)
ij

)2
, the sum of square off-diagonal elements of A(k)

Furthermore,

off(A(k+1)) = off(A(k))− 2
(

a(k)pq

)2
+ 2

(

a(k+1)
pq

)2

= off(A(k))− 2
(

a(k)pq

)2
, since a(k+1)

pq = 0

≤ off(A(k))
(

1− 1
N

)

, since|a(k)pq |2 ≥ off(A(k)/2N

Thus

off(A(k+1)) ≤
(

1− 1

N

)k+1

off(A(0)) → 0 as k → ∞

Example:

A =

















4 2 0

2 3 1

0 1 2

















, J(1, 2; θ) =

















c s 0

−s c 0

0 0 1

















Then

A(1) = J t(1, 2; θ)AJ(1, 2; θ) =

















4c2 − 4cs+ 3s2 2c2 + cs− 2s2 −s

2c2 + cs− 2s2 3c2 + 4cs+ 4s2 c

−s c 1

















Note that off(A(1)) = 2 < 10 = off(A(0)) = off(A)
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Example for Convergence of Jacobi Algorithm

A(0) =



























1.0000 0.5000 0.2500 0.1250

0.5000 1.0000 0.5000 0.2500

0.2500 0.5000 1.0000 0.5000

0.1250 0.2500 0.5000 1.0000



























, A(1) =



























1.5000 0.0000 0.5303 0.2652

0.0000 0.5000 0.1768 0.0884

0.5303 0.1768 1.0000 0.5000

0.2652 0.0884 0.5000 1.0000



























A(2) =



























1.8363 0.0947 0.0000 0.4917

0.0947 0.5000 0.1493 0.0884

0.0000 0.1493 0.6637 0.2803

0.4917 0.0884 0.2803 1.0000



























, A(3) =



























2.0636 0.1230 0.1176 0.0000

0.1230 0.5000 0.1493 0.0405

0.1176 0.1493 0.6637 0.2544

0.0000 0.0405 0.2544 0.7727



























A(4) =



























2.0636 0.1230 0.0915 0.0739

0.1230 0.5000 0.0906 0.1254

0.0915 0.0906 0.4580 0.0000

0.0739 0.1254 0.0000 0.9783



























, A(5) =



























2.0636 0.1018 0.0915 0.1012

0.1018 0.4691 0.0880 0.0000

0.0915 0.0880 0.4580 0.0217

0.1012 0.0000 0.0217 1.0092



























A(6) =



























2.0701 0.0000 0.0969 0.1010

0.0000 0.4627 0.0820 −0.0064

0.0969 0.0820 0.4580 0.0217

0.1010 −0.0064 0.0217 1.0092



























, A(15) =



























2.0856 0.0000 0.0000 0.0000

0.0000 0.5394 0.0000 −0.0000

0.0000 0.0000 0.3750 0.0000

0.0000 −0.0000 0.0000 1.0000
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Power of A Matrix and Its Eigenvalues

Theorem: Let λ1, λ2, · · · , λn be eigenvalues of A ∈ Rn×n. Then λk
1, λ

k
2, · · · , λk

n are eigen-
values of Ak ∈ Rn×n with the same corresponding eigenvectors of A. That is,

Avi = λivi → Akvi = λk
i vi ∀ 1 ≤ i ≤ n

Suppose that the matrix A ∈ Rn×n has n linearly independent eigenvectors v1,v1, · · · ,vn

corresponding to eigenvalues λ1, λ2, · · · , λn. Then any x ∈ Rn can be written as

x = c1v1 + c2v2 + · · ·+ cnvn

Then
Akx = λk

1c1v1 + λk
2c2v2 + · · ·+ λk

ncnvn

In particular, if |λ1| > |λj | for 2 ≤ j ≤ n and c1 6= 0, then Akx will tend to lie in the
direction v1 when k is large enough.
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Power Method for Computing the Largest Eigenvalues

Suppose that the matrix A ∈ Rn×n is diagonalizable and that U−1AU = diag(λ1, λ2, · · · , λn)
with U = [v1, v2, · · · , vn] and |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|. Given u(0) ∈ Rn, then
power method produces a sequence of vectors u(k) as follows.

for k = 1, 2, · · ·

z(k) = Au(k−1)

r(k) = z(k)m = ‖z(k)‖∞, for some 1 ≤ m ≤ n.

u(k) = z(k)/r(k)

endfor

λ1 must be real since the complex eigenvalues must appear in a ”relatively conjugate pair”.

A =







2 1

1 2






⇒

λ1 = 3

λ2 = 1
, v1 =

1√
2

[

1
1

]

, v2 =
1√
2

[

1
−1

]

Let u(0) =

[

1
0

]

, then u(5) =

[

1.0
0.9918

]

, and r(5) = 2.9756.
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QR Iterations for Computing Eigenvalues

%

% Script File: eigQR.m

% Solving Eigenvalues by QR factorization

%

n=4; Nrun=50;

fin=fopen(’dataToeplitz.txt’);

header1=fgetL(fin);

k=fscanf(fin,’%d’);

A=fscanf(fin,’%f’,[n n]);

A=A’;

SaveA=A;

for k=1:Nrun,

s=A(n,n);

A=A-s*eye(n);

[Q R]=qr(A);

A=R*Q+s*eye(n);

end

for i=1:n,

D(i)=A(i,i);

end

D=D’;

E=sort(D,1);

E’

%

% Eigenvalues computed by Matlab Command

%

[U S]=eig(SaveA);

for i=1:n,

D(i)=S(i,i);

end

D
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Algebraic multiplicity and geometric multiplicity

♣ Albebraic Multiplicity

When the characteristic polynomial of A ∈ Rn×n is written as

det(λI − A) = (λ− λ1)
n1(λ− λ2)

n2 · · · (λ− λk)
nk

with λi 6= λj ∀ i 6= j and n1 + n2 + . . . + nk = n. The positive integer ni is called the
algebraic multiplicity of the eigenvalue λi.

♣ Geometric Multiplicity

The geometric multiplicity mi of the eigenvalue λi is defined as the maximum number
of linearly independent eigenvectors associated with λi. That is, mi = λi(S), the dimension
of the eigenspace. Note that 1 ≤ mi ≤ ni forall 1 ≤ i ≤ k.

Example:

A =



































7 0 0 0 0

0 4 1 0 0

0 0 4 0 0

0 0 0 7 0

0 0 0 0 4



































det(λI − A) = (λ− 7)2(λ− 4)3

n1 = 2, n2 = 3

m1 = 2, m2 = 2

λ1 = 7, v1 = ae1 + be4

λ2 = 4, v2 = ce2 + de5
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Block Upper Triangular Matrices

Definition: The square matrix T is block upper triangular if it can be partitioned in the
form



































T11 T12 · · T1r

O T22 · · T2r

· · · · ·

· · · · ·

O O · · Trr



































where each diagonal block Tii is square. If each diagonal block is of order at most two,

then T is said to be in a quasi-∆ form.

Theorem: λ(T ) = ∪ri=1 λ(Tii)

Theorem: Let A ∈ Rn×n have the characteristic polynomial

p(x) = (x− λ1)
n1(x− λ2)

n2 · · · (x− λk)
nk

where λ1, λ2, . . . , λk are distinct. Then A is similar to a matrix of the form



































B1 O · · O

O B2 · · O

· · · · ·

· · · · ·

O O · · Bk



































where each Bi is an ni by ni upper-∆ matrix whose diagonal entries are λi.
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Cayley-Hamilton Theorem

Cayley-Hamilton Theorem: p(A) = O

Example:

A =







3 2

1 4





 ⇒ p(x) = x2 − 7x+ 10 ⇒ A2 − 7A+ 10I = O

Example:

A =



























−3 2 1 1

−6 3 3 1

−3 2 0 2

−2 2 1 0



























∼ T =



























−1 −1 0 0

0 −1 0 0

0 0 1 2

0 0 0 1
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Block Diagonal Upper Triangular Form

Lemma: Suppose that the matrices T and B have the forms

T =



































T11 T12 · · T1r

O T22 · · T2r

· · · · ·

· · · · ·

O O · · Trr



































, B =



































B1 O · · O

O B2 · · O

· · · · ·

· · · · ·

O O · · Br



































where Tii ∈ Rni×ni is upper-∆, all of the main diagonal entries of Tii equal λi, and λ′
is

are distinct for 1 ≤ i ≤ r. Then T is similar to a block diagonal upper-∆ matrix B, where
Bi ∈ Rni×ni is upper-∆ whose main diagonal entries equal λi above.
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Minimal Polynomial

Definition: The minimal polynomial of a matrix A over a field R is defined as the monic
polynomial f with coefficients in R of least degree such that f(A) = O.

Example:

A =

















5 1 0

0 5 0

0 0 5

















, B =



































λ1 0 · · 0

0 λ2 · · 0

· · · · ·

· · · · ·

0 0 · · λn



































, λi 6= λj if i 6= j

Then

fA(x) = (x− 5)2

fB(x) = (x− λ1)(x− λ2) · · · (x− λn)

Theorem: Similar matrices have the same minimal polynomial.
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Jordan Canonical Form

A Jordan block having the eigenvalue λ of geometric multiplicity k has the form

J
(k)
λ =













































λ 1 0 · · 0

0 λ 1 · · 0

· 0 λ · · ·

· · · · · ·

· · · 0 λ 1

0 · · · 0 λ













































Theorem: Let A ∈ Rn×n, then there are unique numbers λ1, λ2, . . . , λk ∈ λ(A) and
n1, n2, . . . , nk such that A is similar to the matrix

diag
(

Jn1
λ1
, Jn2

λ2
, . . . , Jnk

λk

)

Example:

A =

















−2 −1 2

2 2 −1

−3 −1 3

















, B =



























−2 1 3 −1

3 0 −2 2

1 1 2 1

1 −1 −3 0



























, C =

















3 1 0

−1 1 0

0 0 2

















Then A,B,C are silmilar to the following Jordan canonical forms.

JA =

















1 1 0

0 1 1

0 0 1

















, JB =



























1 1 0 0

0 1 0 0

0 0 −1 1

0 0 0 −1



























, JC =

















2 1 0

0 2 0

0 0 2
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Computing A Jordan Canonical Form

A =

















0 1 2

0 0 1

0 0 0

















, U =

















1 2 0

0 1 0

0 0 1

















, JA = U−1AU =

















0 1 0

0 0 1

0 0 0

















λ1 = λ2 = λ3 = 0. dim(R(A)) = 2, Null(A) = {[a, 0, 0]t| a ∈ R}

(a) Find w1,w2 such that R(A) = {aw1 + bw2| a, b ∈ R} and Aw1 = λ1w1, Aw2 =
λ2w2 +w1. Let

w1 =







1
0
0





 , w2 =







x
1
0





 , with x = 2

(b) Solve Ay = w2 to get

y =







0
0
z






with z = 1

(c) Since
Aw1 = λ1w1

Aw2 = λ2w2 +w1

Ay = w2

(d) Let U = [w1, w2, y], then U−1AU = JA.


