Interpolation and Approximation Theory

Finding a polynomial of at most degree n to pass through n+1 points in the interval [a,b] is referred to as "interpolation".

Approximation theory deals with two types of problems.

- Given a data set, one seeks a function best fitted to this data set, for example, given $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$, one seeks a line y = mx + b which best fits this data set.
- Given an explicit function, one seeks a simpler function for representation, for example, use $1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}$ to represent e^x .
 - ♣ Lagrange Polynomial Interpolation
 - A Newton's Divided-Difference Formula
 - ♥ Hermite Polynomial Interpolation
 - Cubic spline interpolation
 - Bezier curves
 - Cubic B-splines
 - Orthogonal functions
 - ♣ Trigonometric functions
 - Chebyshev polynomials
 - \heartsuit Legendre polynomials
 - \heartsuit Laguerre polynomials
 - \heartsuit Gamma functions
 - ♥ Beta functions
 - \heartsuit Bessel functions
 - \Diamond Other Topics with Applications

Polynomial Approximation

Suppose that the function $f(x) = e^x$ is to be approximated by a polynomial of degree 2 over the interval [-1, 1]. The approximations by Taylor polynomial $1 + x + 0.5x^2$ and Chebyshev polynomial $1 + 1.17518x + 0.54309x^2$ are given below.

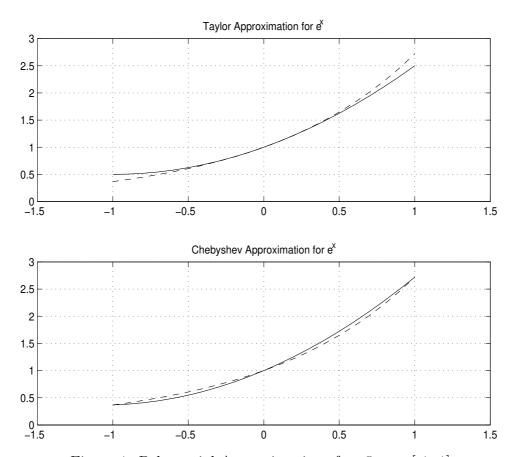


Figure 1: Polynomial Approximations for e^x over [-1, 1]

Taylor Polynomial Approximation

Suppose that $f \in C^{n+1}[a,b]$ and $x_0 \in [a,b]$ is a fixed value. If $x \in [a,b]$, then

$$f(x) = P_n(x) + E_n(x)$$

where $P_n(x)$ is a polynomial that can be used to approximate f(x) by

$$f(x) \approx P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

having some c between x and x_0 such that

$$E_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

- $|e P_{15}(1)| = |e 2.718282818459| < \frac{e}{16!} < \frac{3}{16!} < 1.433844 \times 10^{-13}$ $|sin(x) P_9(x)| < \frac{1}{10!} \le 2.75574 \times 10^{-7}$ for $|x| \le 1$, where

$$P_9(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!}$$

• $|\cos(x) - P_8(x)| < \frac{1}{9!} \le 2.75574 \times 10^{-6} \text{ for } |x| \le 1$, where

$$P_8(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!}$$

Polynomial Interpolation

We attempt to find a polynomial of at most degree n to pass through n+1 points in the interval [a, b].

$$[x_0, y_0]^t$$
, $[x_1, y_1]^t$, ..., $[x_n, y_n]^t$

where

$$a \leq x_0 < x_1 < \cdots < x_n \leq b$$

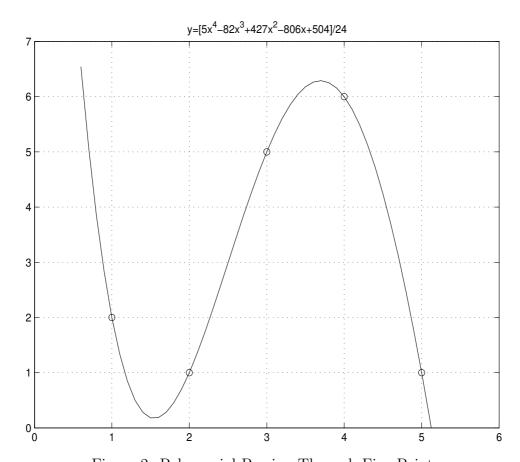


Figure 2: Polynomial Passing Through Five Points

```
% Script File: func4.m
% A quadric function for interpolation: y=f(x)=[5x^4-82x^3+427x^2-806x+504]/24
%
X=0.6:0.1:5.2;
Y=(5*X.^4-82*X.^3+427*X.^2-806*X+504)/24.0;
V=[0 6, 0 7];
plot(X,Y,'b-',[1 2 3 4 5],[2 1 5 6 1],'ro'); axis(V); grid
title('y=[5x^4-82x^3+427x^2-806x+504]/24')
```

Polynomials for Interpolation

Theorem: Suppose that the function y = f(x) is known at the n + 1 distinct points

$$[x_0, y_0]^t$$
, $[x_1, y_1]^t$, ..., $[x_n, y_n]^t$

where

$$a \leq x_0 < x_1 < \cdots < x_n \leq b$$

Then there is a unique polynomial $P_n(x)$ of degree at most n such that

$$P_n(x_i) = y_i \ \forall \ 0 \le i \le n$$

If the error function $E(x) = f(x) - P_n(x)$ is required, then we need to know $f^{(n+1)}(x)$ whose bound of magnitude is

$$max\{|f^{(n+1)}(x)|: a \le x \le b\}$$

 \bullet A Lagrange polynomial of degree n

$$L_{n,k}(x) = \frac{\prod_{j\neq k}^{n} (x - x_j)}{\prod_{j\neq k}^{n} (x_k - x_j)}$$

♥ Error Formula for Lagrange Polynomial

$$f(x) = \sum_{k=0}^{n} f(x_k) L_{n,k}(x) + \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{k=0}^{n} (x - x_k)$$

for some unknown number ξ_x that lies in the smallest interval that contains x_0, x_1, \dots, x_n , and x.

• Polynomials in Newton Form

$$P_n(x) = P_{n-1}(x) + a_n \prod_{j=0}^{n-1} (x - x_j)$$

• Polynomials in Chebyshev Form

$$P_n(x) = \alpha_0 + \alpha_1 T_1(x) + \alpha_2 T_2(x) + \dots + \alpha_n T_n(x)$$

where

$$T_n(x) = \cos(n\cos^{-1}x), \ T_0(x) \equiv 1, \ T_1(x) = x, \ T_2(x) = 2x^2 - 1, \ T_3(x) = 4x^3 - 3x.$$

 \spadesuit Hermite Polynomials $H_n(x)$

An Example for Polynomial Interpolation

We look for polynomials of degree at most 3 to interpolate the following four points.

\boldsymbol{x}	5	-7	-6	0	
y	1	-23	-54	-954	

Table 1:
$$P_3(x) = 4x^3 + 35x^2 - 84x - 954$$

♥ Solution in Lagrange form

$$P_3(x) = 1 \cdot \frac{(x+7)(x+6)(x-0)}{(5+7)(5+6)(5-0)}$$

$$+ (-23) \cdot \frac{(x-5)(x+6)(x-0)}{(-7-5)(-7+6)(-7-0)}$$

$$+ (-54) \cdot \frac{(x-5)(x+7)(x-0)}{(-6-5)(-6+7)(-6-0)}$$

$$+ (-954) \cdot \frac{(x-5)(x+7)(x-6)}{(0-5)(0+7)(0+6)}$$

 \heartsuit Solution in Newton form

$$P_3(x) = 1 + 2(x - 5) + 3(x - 5)(x + 7) + 4(x - 5)(x + 7)(x + 6)$$

♥ Solution in Chebyshev form

$$P_3(x) = -936.5 - 81T_1(x) + 17.5T_2(x) + T_3(x)$$

where

$$T_n(x) = \cos(n\cos^{-1}x), \quad T_0(x) \equiv 1, \quad T_1(x) = x, \quad T_2(x) = 2x^2 - 1, \quad T_3(x) = 4x^3 - 3x.$$

Divided Differences

Suppose that the function y = f(x) is known at the n + 1 points

$$[x_0, f(x_0)]^t$$
, $[x_1, f(x_1)]^t$, \cdots , $[x_n, f(x_n)]^t$, where $a \le x_0 < x_1 < \cdots < x_n \le b$

The n+1 zeroth divided differences of f are defined as

$$f[x_i] = f(x_i) \ 0 \le i \le n$$

The first divided differences of f are defined as

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i} \quad \forall \ 0 \le i \le n - 1$$

The kth divided differences can be inductively defined by

$$f[x_i, x_{i+1}, \dots, x_{i+k-1}, x_{i+k}] = \frac{f[x_{i+1}, x_{i+2}, \dots, x_{i+k}] - f[x_i, x_{i+1}, \dots, x_{i+k-1}]}{x_{i+k} - x_i} \quad \forall \, 0 \le i \le n-k$$

The nth divided difference is

$$f[x_0, x_1, \dots, x_n] = \frac{f[x_1, x_2, \dots, x_n] - f[x_0, x_1, \dots, x_{n-1}]}{x_n - x_0}$$

It can be shown that the nth Lagrange interpolation polynomial w.r.t. $x_0 < x_1 < \cdots < x_n$ can be expressed as Newton (interpolatory) divided-difference formula

$$P_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$$

$$= f[x_0] + \sum_{k=1}^n f[x_0, x_1, \dots, x_k](x - x_0)(x - x_1) \dots (x - x_{k-1})$$
(1)

Newton (interpolatory) divided-difference formula has simpler form when $x_j - x_{j-1} = h \ \forall \ 1 \leq j \leq n$. Let $x = x_0 + sh$, then $x - x_i = (s - i)h$, then the formula ?? becomes

$$P_{n}(x) = P_{n}(x_{0} + sh) = f[x_{0}] + \sum_{k=1}^{n} s(s-1) \cdots (s-k+1)h^{k} f[x_{0}, x-1, \cdots, x_{k}]$$

$$= f[x_{0}] + \sum_{k=1}^{n} \binom{s}{k} k! h^{k} f[x_{0}, x_{1}, \cdots, x_{k}]$$

$$= f[x_{0}] + \sum_{k=1}^{n} \binom{s}{k} \Delta^{k} f(x_{0})$$

$$= f[x_{n}] + \sum_{k=1}^{n} (-1)^{k} \binom{-s}{k} \nabla^{k} f(x_{n})$$

Hermite Interpolation and Polynomial

If $f \in C^1[a, b]$ and $a \le x_0 < x_1 < \cdots < x_n \le b$, the unique polynomial of least degree which agrees with f and f' at x_0, x_1, \dots, x_n is the polynomial of degree at most 2n + 1 given by

$$H_{2n+1}(x) = \sum_{j=0}^{n} f(x_j) H_{n,j} + \sum_{j=0}^{n} f'(x_j) \hat{H}_{n,j}(x)$$

where

$$H_{n,j}(x) = [1 - 2(x - x_j)L'_{n,j}(x_j)]L^2_{n,j}(x)$$

$$\hat{H}_{n,j}(x) = (x - x_j)L_{n,j}^2(x_j)$$

$$L_{n,j}(x) = \frac{(x-x_0)(x-x_1)\cdots(x-x_{j-1})(x-x_{j+1})\cdots(x-x_n)}{(x_j-x_0)(x_j-x_1)\cdots(x_j-x_{j-1})(x_j-x_{j+1})\cdots(x_j-x_n)}$$

- Show that $H_{2n+1}(x_k) = f(x_k)$ and $H'_{2n+1}(x_k) = f'(x_k) \ \forall \ k = 0, 1, \dots, n$.
- Error Formula If $f \in C^{2n+2}[a, b]$, then

$$f(x) = H_{2n+1}(x) + \frac{f^{(2n+2)}(\xi_x)}{(2n+2)!}(x-x_0)^2(x-x_1)^2 \cdots (x-x_n)^2$$

for some $\xi_x \in (a, b)$.

Cubic Spline Interpolation

Given a function f defined on [a, b] and a set of n+1 nodes $a = x_0 < x_1 < \cdots < x_n = b$, a cubic spline interpolant, S, for f is a function that satisfies the following conditions:

- (1) For each $j = 0, 1, \dots, n-1$, S(x) is a cubic polynomial, denoted by $S_j(x)$, on the subinterval $[x_j, x_{j+1})$.
- (2) $S(x_j) = f(x_j)$ for each $j = 0, 1, \dots, n$.
- (3) $S_{j+1}(x_{j+1}) = S_j(x_{j+1})$ for each $j = 0, 1, \dots, n-2$.
- (4) $S'_{j+1}(x_{j+1}) = S'_{j}(x_{j+1})$ for each $j = 0, 1, \dots, n-2$.
- (5) $S''_{j+1}(x_{j+1}) = S''_j(x_{j+1})$ for each $j = 0, 1, \dots, n-2$.
- (6) One of the following sets of boundary conditions is satisfied:
 - (a) $S''(x_0) = S''(x_n) = 0$ (natural or free boundary);
 - (b) $S'(x_0) = f'(x_0)$ and $S'(x_n) = f'(x_n)$ (clamped boundary).

x	0.9	1.3	1.9	2.1	2.6	3.0	3.9	4.4	4.7	5.0	6.0
f(x)	1.3	1.5	1.85	2.1	2.6	2.7	2.4	2.15	2.05	2.1	2.25
\boldsymbol{x}	7.0	8.0	9.2	10.5	11.3	11.6	12.0	12.6	13.0	13.3	
f(x)	2.3	2.25	1.95	1.4	0.9	0.7	0.6	0.5	0.4	0.25	

Table 2: A ruddy duck in flight

Finding A Cubic Spline Interpolant

Let
$$S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$$
, $h_j = x_{j+1} - x_j$, for $0 \le j \le n - 1$,

From (2),
$$a_j = S_j(x_j) = f(x_j)$$
, $0 \le j \le n-1$, and denote $a_n = f(x_n)$.

From (3),
$$a_{j+1} = a_j + b_j(x_{j+1} - x_j) + c_j(x_{j+1} - x_j)^2 + d_j(x_{j+1} - x_j)^3$$
, $0 \le j \le n - 2$.

(A)
$$a_{j+1} = a_j + b_j h_j + c_j h_j^2 + d_j h_j^3$$
, $0 \le j \le n-1$, where $a_n = f(x_n)$.
Similarly, $S'_j(x) = b_j + 2c_j(x - x_j) + 3d_j(x - x_j)^2$, $0 \le j \le n-1$.

(**B**)
$$b_{j+1} = b_j + 2c_jh_j + 3d_jh_j^2$$
, $0 \le j \le n-1$ by (4).

Define
$$c_n = \frac{1}{2}S''(x_n)$$
, and by using (5), we have (C) $c_{j+1} = c_j + 3d_jh_j$, $0 \le j \le n-1$, and $c_{n-1} + 3d_{n-1}h_{n-1} = c_n = 0$ by using (6)(a).

$$(\mathbf{C}')$$
 $d_j = \frac{1}{3h_j}(c_{j+1} - c_j), \quad 0 \le j \le n-1$, substitute (\mathbf{C}') into (\mathbf{A}) and (\mathbf{B}) , we have

(**D**)
$$a_{j+1} = a_j + b_j h_j + \frac{h_j^2}{3} (2c_j + c_{j+1}), \quad 0 \le j \le n-1$$

(E)
$$b_{j+1} = b_j + h_j(c_j + c_{j+1}), \quad 0 \le j \le n-1, \text{ or }$$

(E')
$$b_j = b_{j-1} + h_{j-1}(c_{j-1} + c_j), \quad 1 \le j \le n$$

From (\mathbf{D}) , we have

(F)
$$b_j = \frac{1}{h_i}(a_{j+1} - a_j) - \frac{h_j}{3}(2c_j + c_{j+1}), \quad 0 \le j \le n - 1, \text{ or }$$

$$(\mathbf{F}') \quad b_{j-1} = \frac{1}{h_{j-1}} (a_j - a_{j-1}) - \frac{h_{j-1}}{3} (2c_{j-1} + c_j), \quad 1 \le j \le n.$$

Substitute (\mathbf{F}) and (\mathbf{F}') into (\mathbf{E}') , we have

(G)
$$h_{j-1}c_{j-1} + 2(h_{j-1} + h_j)c_j + h_jc_{j+1} = \frac{3}{h_j}(a_{j+1} - a_j) - \frac{3}{h_{j-1}}(a_j - a_{j-1}), \text{ for } 1 \le j \le n-1.$$

Thus the problem is reduced to solving $A\mathbf{c} = \mathbf{h}$ with (n-1) equations and (n-1) unknown variables $\mathbf{c} = [c_1, c_2, \dots, c_{n-1}]^t$ by using the boundary conditions $c_0 = \frac{1}{2}S''(x_0) = 0$ and $c_n = \frac{1}{2}S''(x_n) = 0.$

Once $\{c_j, 0 \le j \le n-1\}$ are solved, $\{d_j, 0 \le j \le n-1\}$ and $\{b_j, 0 \le j \le n-1\}$ could be easily solved by using (C') and (F'), respectively.

$$\begin{bmatrix} 2(h_0 + h_1) & h_1 & 0 & 0 & \cdots & 0 \\ h_1 & 2(h_1 + h_2) & h_2 & 0 & \cdots & 0 \\ 0 & h_2 & \ddots & h_3 & \cdots & \vdots \\ \vdots & 0 & \vdots & \ddots & \cdots & 0 \\ \vdots & \vdots & 0 & h_{n-3} & \ddots & h_{n-2} \\ 0 & 0 & \cdots & \cdots & h_{n-2} & 2(h_{n-2} + h_{n-1}) \end{bmatrix} \times \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ \vdots \\ c_{n-1} \end{bmatrix} = \mathbf{h}$$

where

$$\mathbf{h} = \begin{bmatrix} \frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0) \\ \frac{3}{h_2}(a_3 - a_2) - \frac{3}{h_1}(a_2 - a_1) \\ \vdots \\ \vdots \\ \frac{3}{h_{n-1}}(a_n - a_{n-1}) - \frac{3}{h_{n-2}}(a_{n-1} - a_{n-2}) \end{bmatrix}$$

Cubic Spline Interpolant for A Ruddy Duck

```
% Script File: cspline.m
% Cubic Spline Interpolation for a rubby duck of 21 points
%
n=21;
fin=fopen('duck.txt');
fgetL(fin);
X=fscanf(fin,'%f',n);
Y=fscanf(fin,'%f',n);
X0=0.9:0.4:13.3;
Y0=spline(X,Y,X0);
plot(X,Y,'b--o',X0,Y0,'r-'); axis([0.5 13.5, -1, 5]); grid
legend('Sample Points of A Duck','Cubic Spline Interpolant');
title('Cubic spline interpolant for a ruddy duck')
```

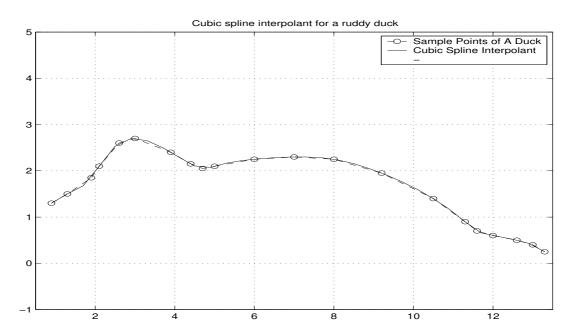


Figure 3: Cubic Spline Interpolant for A Ruddy Duck

Bezier Curves and B-splines

Bezier curves and B-splines are widely used in computer graphics and computer-aided design. These curves have good geometric property in that in changing one of the points we change only one portion of the fitted curve, a *local* effect. For cubic splines, changing only one point might have a *global* effect.

Bezier curves are named after the French engineer, Pierre Bezier of the Renault Automobile Company. He developed them in the early 1960's to fill a need for curves whose shape can be practically controlled by changing a few parameters.

The nth degree Bezier polynomial determined by n+1 points is given by

$$\mathbf{P}(u) = \sum_{i=0}^{n} C_i^n (1-u)^{n-i} u^i \mathbf{P}_i$$

Bezier cubics are commonly used. For $0 \le u \le 1$, denote

$$x(u) = (1-u)^3 x_0 + 3(1-u)^2 u x_1 + 3(1-u)u^2 x_2 + u^3 x_3$$

$$y(u) = (1-u)^3 y_0 + 3(1-u)^2 u y_1 + 3(1-u)u^2 y_2 + u^3 y_3$$

Then

$$\frac{dx}{du} = 3(x_1 - x_0), \quad \frac{dy}{du} = 3(y_1 - y_0) \quad at \ u = 0.$$

$$\frac{dy}{dx} = \frac{y_1 - y_0}{x_1 - x_0}$$
 at \mathbf{P}_0 , $\frac{dy}{dx} = \frac{y_2 - y_3}{x_2 - x_3}$ at \mathbf{P}_3

An Algorithm for drawing a Bezier curve

for
$$i = 0, 3n - 1, 3$$

for $u = 0, 1, \Delta u$

$$x(u) = (1 - u)^3 x_i + 3(1 - u)^2 u x_{i+1} + 3(1 - u) u^2 x_{i+2} + u^3 x_{i+3}$$

$$y(u) = (1 - u)^3 y_i + 3(1 - u)^2 u y_{i+1} + 3(1 - u) u^2 y_{i+2} + u^3 y_{i+3}$$

$$\text{plot}(x(u), y(u))$$

endfor

endfor

B-splines

The B-splines (basis of splines) are like Bezier curves in that they do not ordinarily pass through the given data points. They can be of any degree, but cubic B-splines are commonly used.

Given the points $P_i(x_i, y_i)$, $i = 0, 1, \dots, n$, a portion of a cubic B-spline for the interval (P_i, P_{i+1}) , $i = 1, 2, \dots, n-1$, is computed by

$$B_i(u) = \sum_{k=-1}^2 b_k P_{i+k}$$

where

$$b_{-1} = \frac{(1-u)^3}{6}, \quad b_0 = \frac{u^3}{2} - u^2 + \frac{2}{3}, \quad b_1 = \frac{-u^3}{2} + \frac{u^2}{2} + \frac{u}{2} + \frac{1}{6}, \quad b_2 = \frac{u^3}{6}$$

u-cubics act as weighting factors on the coordinates of the four successive points to generate the curve, for example, at u=0, the weights are $\left[\frac{1}{6},\frac{2}{3},\frac{1}{6},0\right]$; at u=1, the weights are $\left[0,\frac{1}{6},\frac{2}{3},\frac{1}{6}\right]$.

An Algorithm for drawing a cubic B-spline

for
$$i = 1, n - 2$$

for $u = 0, 1, \Delta u$
 $x = x_i(u)$
 $y = y_i(u)$
plot(x,y)
endfor
endfor

where

$$x_i(u) = \frac{(1-u)^3}{6}x_{i-1} + \left[\frac{u^3}{2} - u^2 + \frac{2}{3}\right]x_i + \left[\frac{-u^3}{2} + \frac{u^2}{2} + \frac{u}{2} + \frac{1}{6}\right]x_{i+1} + \frac{u^3}{6}x_{i+2}$$

$$y_i(u) = \frac{(1-u)^3}{6}y_{i-1} + \left[\frac{u^3}{2} - u^2 + \frac{2}{3}\right]y_i + \left[\frac{-u^3}{2} + \frac{u^2}{2} + \frac{u}{2} + \frac{1}{6}\right]y_{i+1} + \frac{u^3}{6}y_{i+2}$$

• Note that a B-spline does not necessarily pass through any point of P_i 's.

Approximation Theory

Approximation theory deals with two types of problems.

- Given a data set, one seeks a function best fitted to this data set, for example, given $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$, one seeks a line y = mx + b which best fits this data set.
- Given an explicit function, one seeks a simpler function for representation, for example, use $1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}$ to represent e^x .
- Orthogonal Functions

The set of functions $\{\phi_0, \phi_1, \dots, \phi_n\}$ is said to be *orthogonal* for the interval [a, b] with respect to the weight function w if

$$\int_{a}^{b} \phi_{i}(x)\phi_{k}(x)w(x)dx = \begin{cases} \alpha_{k} > 0 & if \ i = k \\ 0 & if \ i \neq k \end{cases}$$
 (2)

 $\{\phi_0, \phi_1, \dots, \phi_n\}$ is said to be *orthonormal* if, in addition, $\alpha_k = 1$ for $0 \le k \le n$.

- $\{1,\cos x,\sin x,\cdots,\cos kx,\sin kx,\cdots\}$ with respect to $w(x)\equiv 1$ is orthogonal for the interval $[0,2\pi]$.
- ♣ The set of Chebyshev polynomials $\{\cos(n\cos^{-1}x)\}_{n=0}^{\infty}$ is orthogonal with respect to $w(x) = \frac{1}{\sqrt{1-x^2}}$ for the interval [-1,1].
- **♣** The set of Chebyshev polynomials $\{\frac{1}{\sqrt{\pi}}, \frac{\sqrt{2}}{\sqrt{\pi}}[\cos(n\cos^{-1}x)]_{n=1}^{\infty}\}$ is orthonormal with respect to $w(x) = \frac{1}{\sqrt{1-x^2}}$ for the interval [-1,1].
- \heartsuit The set of Legendre polynomials $\{P_n(x) = \frac{1}{2^n n!} \cdot \frac{d^n (x^2 1)^n}{dx^n}\}$ is orthogonal with respect to $w(x) \equiv 1$ for the interval [-1,1]. Note that

$$\int_{-1}^{1} P_m(x) P_n(x) dx = \begin{cases} \frac{2}{2n+1} & \text{for } m = n \\ 0 & \text{for } m \neq n \end{cases}$$
 (3)

Any high-order Legendre polynomial may be derived using the recursion formula

$$P_n(x) = \frac{2n-1}{n}xP_{n-1}(x) + \frac{n-1}{n}P_{n-2}(x)$$
(4)

Note that

$$P_0(x) = 1$$
, $P_1(x) = x$, $P_2(x) = \frac{1}{2}(3x^2 - 1)$, $P_3(x) = \frac{1}{2}(5x^3 - 3x)$