Interpolation and Approximation Theory

Finding a polynomial of at most degree n to pass through n+ 1 points in the interval [a, 0]
is referred to as "interpolation”.

Approximation theory deals with two types of problems.

e Given a data set, one seeks a function best fitted to this data set, for example, given
{(z1,11), (x2,92), "+, (Tn, yn)}, one seeks a line y = mx + b which best fits this data
set.

e Given an explicit function, one seeks a simpler function for representation, for exam-
2 3
ple, use 1 +z + 4 + % to represent e”.
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Polynomial Approximation

Suppose that the function f(x) = e® is to be approximated by a polynomial of degree
2 over the interval [-1, 1]. The approximations by Taylor polynomial 1 + x + 0.5z% and
Chebyshev polynomial 1 + 1.17518z 4 0.5430922 are given below.
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Figure 1: Polynomial Approximations for e* over [-1, 1]

X=-1:0.1:1;

YO=exp (X) ;

Y1=1.0000+1.0000*X+0.5000*X."2; % Taylor Expansion
¥2=1.0000+1.17518*X+0.54309*X."2; % Chebyshev Polynomial by Chaurchin
%Y2=1.0000+1.129772*X+0.532042+X."2; 7 Chebyshev Polynomial from Textbook
v=[-1.5 1.5, 0 3];

subplot(2,1,1)

plot(X,Y0,’b--",X,Y1,’r-?); axis(V); grid;

title(’Taylor Approximation for e“x’)

subplot(2,1,2)

plot(X,Y0,’b--",X,Y2,°r-"); axis(V); grid;

title(’Chebyshev Approximation for e“x’)



Taylor Polynomial Approximation

Suppose that f € C""{a,b] and zy € [a,b] is a fixed value. If = € [a, b], then

f(x) = Pu(x) + En()

where P,(x) is a polynomial that can be used to approximate f(x) by

n ) (g
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having some ¢ between x and x, such that

f(n+1) (C)

En(@) =

(ZL‘ _ fEO)n+1

o |e — Pis(1)] = |e — 2.718282818459| < 5 < 2 < 1.433844 x 10713

o [sin(z) — Py(x)| < 1 < 2.75574 x 1077 for |z < 1, where

AR T

Pg(a:)—x—ijg—F-l-a

o [cos(z) — Ps(z)] < 5 < 2.75574 x 107° for |z| < 1, where
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Polynomial Interpolation

We attempt to find a polynomial of at most degree n to pass through n + 1 points in the
interval [a, b].
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where
a <19 < 13 < 0 <z, <D
y=[5x*-82x°+427x%-806x+504]/24
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Figure 2: Polynomial Passing Through Five Points
pA

% Script File: func4.m

% A quadric function for interpolation: y=f(x)=[5x"4-82x"3+427x"2-806x+504]/24
h

X=0.6:0.1:5.2;

Y=(5%X."4-82%X. " 3+427+X. 2-806*X+504) /24 .0;

v=[0 6, 0 7];

plot(X,Y,’b-">,[1 2 3 45],[2 15 6 1],’ro’); axis(V); grid
title(’y=[5x"4-82x"3+427x"2-806x+504]/24")



Polynomials for Interpolation

Theorem: Suppose that the function y = f(x) is known at the n + 1 distinct points

['r()uy()]tv [xhyl]tv ) [xnuyn]t

where
o < 3o < 17 < -0 <z <D

Then there is a unique polynomial P, (z) of degree at most n such that
Px)=y; V 0<i<n

If the error function E(z) = f(z) — P,(x) is required, then we need to know f+1(x)
whose bound of magnitude is

maz{|f"V(z)]: a <z < b}

e A Lagrange polynomial of degree n

H?;ék<x — ;)

Log(z) =

O Error Formula for Lagrange Polynomial

F@) = 32 F@) Lnale) + L) [T (0 - )
x) = T )L k() + —F—— T — Iy
= (n+1)! %
for some unknown number &, that lies in the smallest interval that contains xg, xq, -+, x,,

and z.

e Polynomials in Newton Form
n—1
Pn<.§lf) = Pn,1<.l’) —+ Qp, H (SL’ — .Tj)
j=0
e Polynomials in Chebyshev Form
P.(z) = g+ aiTi () + aoTo(z) + - - - + o, T ()
where

T, (z) = cos(ncos™'z), Ty(x) =1, Ty(x) =z, Th(x) = 22> — 1, Ty(x) = 42° — 3z.

& Hermite Polynomials H, ()



An Example for Polynomial Interpolation

We look for polynomials of degree at most 3 to interpolate the following four points.

z[5]-7[6] 0
y |l T 1-237]-54 | -954

Table 1: P3(z) = 42® + 352% — 84z — 954

@ Solution in Lagrange form

o (z+7)(z+6)(z—0)
Ps(z) = 1 Em6ro6-0)

(z—5)(z+6)(z—0)
+ (=23)- (=7-5)(=7+6)(~=7-0)

(z=5)(z+7)(xz—0)
+ (=54)- (—6—5)(—6+7)(—6-0)

(z—=5)(x+7)(x—6)
+ (—954) - (0—5)(0+7)(0+6)

Q Solution in Newton form

Py(x)=14+2(x—=5)+3(x—=5)(z+7)+4(x — 5)(x + 7)(z + 6)

@ Solution in Chebyshev form
Py(z) = —936.5 — 8171 (x) + 17.5T5(x) + T3(x)

where

T, (z) = cos(ncos™'z), Ty(x) =1, Ty(x) =z, Th(z) = 22> — 1, Ty(x) = 42° — 3z.



Divided Differences

Suppose that the function y = f(z) is known at the n + 1 points
[0, f(20)]', [21, flx1)], -+, [2n, flzn)], where a < zo < 27 < --- < @, <D
The n + 1 zeroth divided differences of f are defined as
flei = flz) 0<i<n
The first divided differences of f are defined as
flisa] — flxi]

Tip1 — T

Vo<i<n-—1

floi, wip] =
The kth divided differences can be inductively defined by

flTivrs Tigo, -, Tig) — fl2i, Tigr, -+, Tigr]

Titk — L4

floi, Tig1, -+, Tigk—1, Tivk] = VO<i<n—k

The nth divided difference is

Sl o, wy] — flro, @1, - 00
Flao, o] = [ n] — [l n1]
Tp — X9
It can be shown that the nth Lagrange interpolation polynomial w.r.t. zop < 1 < -+ < x,

can be expressed as Newton (interpolatory) divided-difference formula

Py(x) = flxo] + flzo, x1](x — x0) + flxo, 21, -+, ) (@ — x0)(# — 21) - -+ (& — pq)

= flwo] + 5=t flo, w1, -, v} (x — o) (2 — 1) -+ (¥ — Tp1)
(1)
Newton (interpolatory) divided-difference formula has simpler form when z; — z;_1 =
h ¥1<j<n.Letz=uxy+ sh, then x — x; = (s — i)h, then the formula ?? becomes

Pu(z) = Pa(zo+sh) = flzo] + Zhoys(s = 1)+ (s =k + DA flwg, 2 — 1, 2y

S
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Hermite Interpolation and Polynomial

If f e Cla,b] anda < zy <z < -+ <z, <D, the unique polynomial of least degree
which agrees with f and f’ at xg,x1, -, 2, is the polynomial of degree at most 2n + 1
given by

M-

H2n+1(37) =

P Hog + 3 P Hos(2)
=0

7=0

where
Hy () = [1 = 2(x — a3) L], j(x)] L7 ()

A~

H,, j(x) = (x — j) Ly ;(x;)

(@ —xo)( —m) - (@ — 2 ) (@ = 2j41) - (2 — 2)

Englr) = (@5 = wo)(xj —@1) -+ (25 — wj) (05 — Tjpn) -+ (25 — @)

e Show that Hy,1(zx) = f(xy) and Hy, oy (x) = f'(2) VE=0,1,---,n.

e Error Formula
If f € C**2[a,b], then

Fer2 (&)

(2n + 2)! (x—20)*(x — 1) - (x — 1)

f(z) = Hopya () +

for some &, € (a,b).



Cubic Spline Interpolation

Given a function f defined on [a,b] and a set of n+1nodes a = g < 1 < --- < x, = b,
a cubic spline interpolant, S, for f is a function that satisfies the following conditions:

(1) For each j = 0,1,---,n — 1, S(z) is a cubic polynomial, denoted by S;(x), on the
subinterval [z;, ;1)

(2) S(z;) =

(3) Sjyi(wjr) =

(4) 95 (xj41) = Sj(xj41) for each j =0,1,---,n —2.
(Tjr1) =

f(z;) for each j =0,1,--- n.

Sj(xj41) for each j =0,1,---,n— 2.

(5) ST (wjs
(6) One of the following sets of boundary conditions is satisfied:

(a) S"(zg) = S"(x,) = 0 (natural or free boundary);

(b) S"(xo) = f'(xo) and S'(z,,) = f'(x,) (clamped boundary).

S%(wjy1) for each j =0,1,---,n — 2.

z (0913192126 | 30| 39|44 |47 | 50| 6.0
flz) | 1.3 1.5 | 1.85| 2.1 | 2.6 | 2.7 | 24 | 2.15|2.05| 2.1 | 2.25

z |70 80 | 92 |10.5|11.3|11.6 | 12.0 | 12.6 | 13.0 | 13.3
f(z)| 231225195 14 | 09 |07 ] 06| 05| 04 |0.25

Table 2: A ruddy duck in flight
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Finding A Cubic Spline Interpolant

Let S;(x) = aj+b;(x — ;) +cj(w —x;)* +dj(x — ;)% hj=xj41—x;, for 0<j<n-1,
From (2), a; = Sj(z;) = f(z;), 0<j<n-—1, and denote a, = f(z,).
From (3), aji1 = a; +bj(xj1 — 2;) + ¢ (201 — 25)° + dj(@01 — 25)°, 0<j<n-2.

(A)  ajp1 = a; 4+ bjh; + ;b3 +d;h3, 0 <j <n—1, where a, = f(z,).

VR

Similarly, Sj(z) = b; +2¢j(z — x;) + 3d;(z —x;)*, 0<j<n—1
(B) bj+1 = bj + 2thj + 3djh2

Define ¢, = 35”(z,), and by using (5), we have
(C) c¢jy1=c¢j+3djhj, 0<j<n-—1, andc¢,_1+3dy_1h,—1 = ¢, = 0 by using (6)(a).

(C") dj =z=(cjs1 —¢j), 0<j<n-—1,substitute (C') into (A) and (B), we have

3h;
h? )
(D) aji1 =a; +bjh; +3(2¢; +¢j11), 0<j<n—1
(E bj+1:bj+hj(cj+cj+1)7 OS] STL—]_, or
(E/) bj = bj,1 + hjfl(ijl + Cj), 1<j<n

From (D), we have

(F) bj:%j<aj+1_aj)_%<26j+6j+1>7 OS] Sn—l, or
= hj71

(F) b =500 —ajm1) — HH 201 +¢), 1<j<n

Substitute (F) and (F’) into (E), we have

(G) hjrcjor+2(hj1+hy)ej+hjcin = 7-(aj01—a5) — (a5 —ajm), forl<j<n-—1
Thus the problem is reduced to solving Ac = h with (n—1) equations and (n—1) unknown
variables ¢ = [¢1, ¢, -+, ¢,_1]" by using the boundary conditions ¢y = 35”(z9) = 0 and
¢ = 35"(2,) = 0.

Once {¢;, 0 < j <n—1} are solved, {d;, 0 <j<n—1} and {b;, 0 <j <n—1} could
be easily solved by using (C’) and (F), respectively.
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Cubic Spline Interpolant for A Ruddy Duck

h

% Script File: cspline.m

% Cubic Spline Interpolation for a rubby duck of 21 points
b

n=21;

fin=fopen(’duck.txt’);

fgetL(fin);

X=fscanf (fin,’%f’,n);

Y=fscanf (fin,’%f’,n);

X0=0.9:0.4:13.3;

YO=spline(X,Y,X0);

plot(X,Y,’b--0’,X0,Y0,’r-’); axis([0.5 13.5, -1, 5]); grid
legend (’Sample Points of A Duck’,’Cubic Spline Interpolant’);
title(’Cubic spline interpolant for a ruddy duck’)

Cubic spline interpolant for a ruddy duck
5 T T

T T
—O— Sample Points of A Duck
—— Cubic Spline Interpolant

2 4 6 8 10 12

1 i i i

Figure 3: Cubic Spline Interpolant for A Ruddy Duck

12
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Bezier Curves and B-splines

Bezier curves and B-splines are widely used in computer graphics and computer-aided
design. These curves have good geometric property in that in changing one of the points
we change only one portion of the fitted curve, a local effect. For cubic splines, changing
only one point might have a global effect.

Bezier curves are named after the French engineer, Pierre Bezier of the Renault Auto-
mobile Company. He developed them in the early 1960’s to fill a need for curves whose
shape can be practically controlled by changing a few parameters.

The nth degree Bezier polynomial determined by n + 1 points is given by

P(u) = iCi"(l — )Py

=0

Bezier cubics are commonly used. For 0 < u < 1, denote

r(u) = (1 —u)?zo + 3(1 — u)?uz; + 3(1 — w)u’zy + u’rs

y(u) = (1 - u)3y0 +3(1 - u)zuyl +3(1 - u)u2y2 + uys

Then J J
ﬁ = 3(z1 — 20), ﬁ =3(y1 —y) at u=0.
d - d —
—y = h Yo at PQ, —y = 2 Ys at P3
dr 11— x9 dr  T9 — x3

An Algorithm for drawing a Bezier curve

fori=0,3n—1,3
foru = 0, 1, Au
w(u) = (1 —u)’z; + 3(1 — u)’uzips +3(1 — w)u’rips + u’zigs
y(u) = (1 —u)’y; + 3(1 — w)*uyiyr + 3(1 — w)u?yiya + u’yirs
plot(x(u), y(u))
endfor

endfor
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B-splines

The B-splines (basis of splines) are like Bezier curves in that they do not ordinarily
pass through the given data points. They can be of any degree, but cubic B-splines are
commonly used.

Given the points P;(x;, v;), 7 =0,1,---,n, a portion of a cubic B-spline for the interval
(P, Py1),1=1,2,--- n—1,is computed by

2
Bi(u) = Z br Ptk

k=—1

1—u)? ud 2 —u® wr w1 ud
!, bp=——u*+=, bj=—+—+ -+ by = —

I 1
! 6 2 3 2 "2 "2 g 6

u-cubics act as weighting factors on the coordinates of the four successive points to
generate the curve, for example, at u = 0, the weights are [%, %, %, 0]; at uw = 1, the weights
are [0, 3, 2, 4.

An Algorithm for drawing a cubic B-spline

fori=1,n—2

foru=0,1,Au
r = x;(u)
y = yi(u)
plot(x,y)
endfor
endfor
where
()_(1—u)3 +[u?’ 2+2] +[—u3+u2+u+1] +u3
R S T T B TS B S A e
()_(1—u)3 +[u3 2+2] +[—u3+u2+u+1] +u3
Yi\u) = 6 Yi—1 9 U 3 Yi 2 9 9 6 Yi+1 6 Yiv2

e Note that a B-spline does not necessarily pass through any point of P/s.
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Approximation Theory

Approximation theory deals with two types of problems.

e Given a data set, one seeks a function best fitted to this data set, for example, given
{(z1,11), (x2,92), -+, (Tn, yn)}, one seeks a line y = ma + b which best fits this data
set.

e Given an explicit function, one seeks a simpler function for representation, for exam-
2 3
ple, use 1 +z + % + % to represent e”.

e Orthogonal Functions
The set of functions {¢g, ¢1, -, ¢, } is said to be orthogonal for the interval [a, b] with
respect to the weight function w if

b ap >0 Zf 1=k
| si@)on@wia)ds = 2
a 0 if ik

{¢0, 1, -, Pn} is said to be orthonormal if, in addition, o = 1 for 0 < k < n.

& {1,cosx,sinz,---,coskx,sinkz,---} with respect to w(x) = 1 is orthogonal for the
interval [0, 27].

& {\/%—W, % cos, ﬁ sinz, - -, ﬁ cos kx, ﬁ sinkx,- -} with respect to w(z) = 1 is or-
thonormal for the interval [0, 27].

[e.9]

& The set of Chebyshev polynomials {cos(ncos™ z)}22, is orthogonal with respect to

w(z) = ﬁ for the interval [—1, 1].

1

& The set of Chebyshev polynomials {ﬁ, %[cos(n cos™ ' x)]22,} is orthonormal with re-

spect to w(z) = ﬁ for the interval [—1,1].

1 dh(@2-1)"

O The set of Legendre polynomials {F,(z) = 5 Tn)} is orthogonal with respect to

w(z) =1 for the interval [—1, 1]. Note that

2

1 ri Jorm=n
| Pul@)Pua)de = (3)
! 0 form#n

Any high-order Legendre polynomial may be derived using the recursion formula

2n —1 n—1
= xP,_1(z) +

P,(x) Py s() (4)

n
Note that

Po(&) = 1, Pi(z) =z, Pyx) = %(3@«2 — 1), Pyz) = %(5:53 _ 32)



