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Proof of the Central Limit Theorem

Theorem: Let X1, X2, . . . , Xn be a random sample of size n from N(µ, σ2). Define X =
1
n

∑n
i=1 Xi, then X ∼ N(µ, σ2/n).

Theorem: Let X be the mean of a random sample X1, X2, . . . , Xn of size n from a distri-
bution with mean µ and variance σ2. Define Wn = (X − µ)/(σ/

√
n). Then

(a) Wn = (
∑n

i=1 Xi − nµ)/(
√

nσ)

(b) P (Wn ≤ w) ≈
∫ w
−∞

1√
2π

e−z2/2dz = Φ(w).

(c) Wn ∼ N(0, 1) as n → ∞.

(Proof)

E[exp(tWn)] = E
{

exp
[(

t√
nσ

)

(
∑n

i=1 Xi − nµ)
]}

= E
{

exp
[(

t√
n

) (

X1−µ
σ

)

+ · · ·+
(

t√
n

) (

Xn−µ
σ

)]}

= E
{

exp
[(

t√
n

) (

X1−µ
σ

)]}

· · ·E
{

exp
[(

t√
n

) (

Xn−µ
σ

)]}

,

which follows from the independence of X1, X2, · · · , Xn. Then

E[exp(tWn)] =
[

M
(

t√
n

)]n
, − h < t√

n
< h,

where
M(t) = E

{

exp
[

t
(

Xi−µ
σ

)]}

, − h < t < h

is the common moment-generating function of each

Yi =
Xi − µ

σ
, i = 1, 2, · · · , n.

since E(Yi) = 0 and E(Y 2
i ) = 1, it must be that

M(0) = 1, M ′(0) = E
(

Xi − µ

σ

)

= 0, M”(0) = E

[

(

Xi − µ

σ

)2
]

= 1

Hence, using Taylor’s formula with a remainder, we know that there exists a number
t1 between 0 and t such that

M(t) = M(0) + M ′(0)t +
M ′′(t1)t

2

2
= 1 +

M ′′(t1)t
2

2
.
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Adding and subtracting t2/2, we have

M(t) = 1 +
t2

2
+

]M ′′(t1) − 1]t2

2
.

Using this expression of M(t) in E[exp(tWn)], we can represent the moment-generating
function of Wn by

E[exp(tWn)] =
{

1 + 1
2

(

t√
n

)2
+ 1

2
[M ′′(t1) − 1]

(

t√
n

)2
}n

=
{

1 + t2

2n
+ [M ′′(t1)−1]t2

2n

}n
, −

√
nh < t <

√
nh,

where now t1 is between 0 and t/
√

n. Since M ′′(t) is continuous at t = 0 and t1 → 0
as n → ∞, we have

limn→∞[M ′′(t1) − 1] = 1 − 1 = 0

Thus,

limn→∞E[exp(tWn)] = limn→∞

{

1 + t2

2n
+ [M ′′(t1)−1]t2

2n

}n

= limn→∞

{

1 + t2

2n

}n
= et2/2

for all real t. We know that et2/2 is the moment-generating function of the standard
normal distribution, N(0, 1). Therefore, the limiting distribution of

Wn =
X − µ

σ/
√

n
=

∑n
i=1 Xi − nµ
√

nσ
=

∑n
i=1 Xi − nµ√

nσ2
−→ N(0, 1) as n → ∞.


