

Subjects to Study in April

- (1) Random Variables, Discrete vs. Continuous
- (2) Probability Mass Function and Its Cumulative Distribution Function
- (3) Examples
- (4) Moment, Moment-Generating Function, Expectation, Variance
- (5) Special Discrete Distributions (Bernoulli, Binomial, Poisson, etc.)
- (6) Probability Density Function and Its Cumulative Distribution Function
- (7) Examples
- (8) Moment, Moment-Generating Function, Expectation, Variance
- (9) Special Continuous Distributions (Exponential, Gamma, Normal, etc.)

Discrete Moment – Generating Function

- Let X be a discrete r.v. with probability mass function $p(x)$ on A , then
- $E(X^n) = \sum_{x \in A} x^n p(x)$ is called the *nth* moment of X if it exists.
- When $n = 1$, $E(X)$ is the *expected value or expectation*.
- When $n = 2$, $E(X^2)$ is called the *second moment*.
- Note that $Var(X) = E(X^2) - (E[X])^2$
- $M(t) = E(e^{tX}) = \sum_{x \in A} e^{tx} p(x)$ is called the *moment-generating function* for X . Then $M^{(n)}(0) = E(X^n)$.
- Note that $M'(0) = E(X)$, and $Var(X) = M''(0) - (M'(0))^2$

Moment-Generating Function for a Binomial Distribution

- If n Bernoulli trials all with probability of success p are performed independently, then X , the number of successes, is called a *binomial with parameters n and p* . The set of possible values of X is $\{0, 1, 2, \dots, n\}$. The probability mass function (pmf) is given as
- $$f(x) = P(X = x) = \binom{n}{x} p^x (1 - p)^{n-x} \text{ if } x = 0, 1, 2, \dots, n \quad (\text{eq. 5.2})$$
- ~~$= 0 \text{ elsewhere.}$~~
- $$M(t) = E(e^{tX}) = \sum_{x=0}^n e^{tx} \binom{n}{x} p^x (1 - p)^{n-x} = (1 - p + pe^t)^n$$
- $$E(X) = np, \text{Var}(X) = np(1 - p), \sigma_X = \sqrt{np(1 - p)}$$