

6. and 7. Continuous Random Variables and Special Continuous Distributions

- Definition 6.1 on P.243:

Let X be a random variable. Suppose that there exists a nonnegative real-values function $f: \mathbb{R} \rightarrow [0, \infty)$ such that for any subset of real numbers A that can be constructed from intervals by a countable number of set operations,

$$P(X \in A) = \int_A f(x)dx.$$

Then X is called absolutely continuous, or for simplicity, continuous. The f is called the *probability density function* (p.d.f., or pdf) of X . $F(t) = \int_{-\infty}^t f(x)dx$ is called the (*cumulative distribution function* (c.d.f., or cdf) of X .

6.1 Probability Density Function

6.2 Density Function of a Function of a Random Variable

6.3 Expectations and Variances

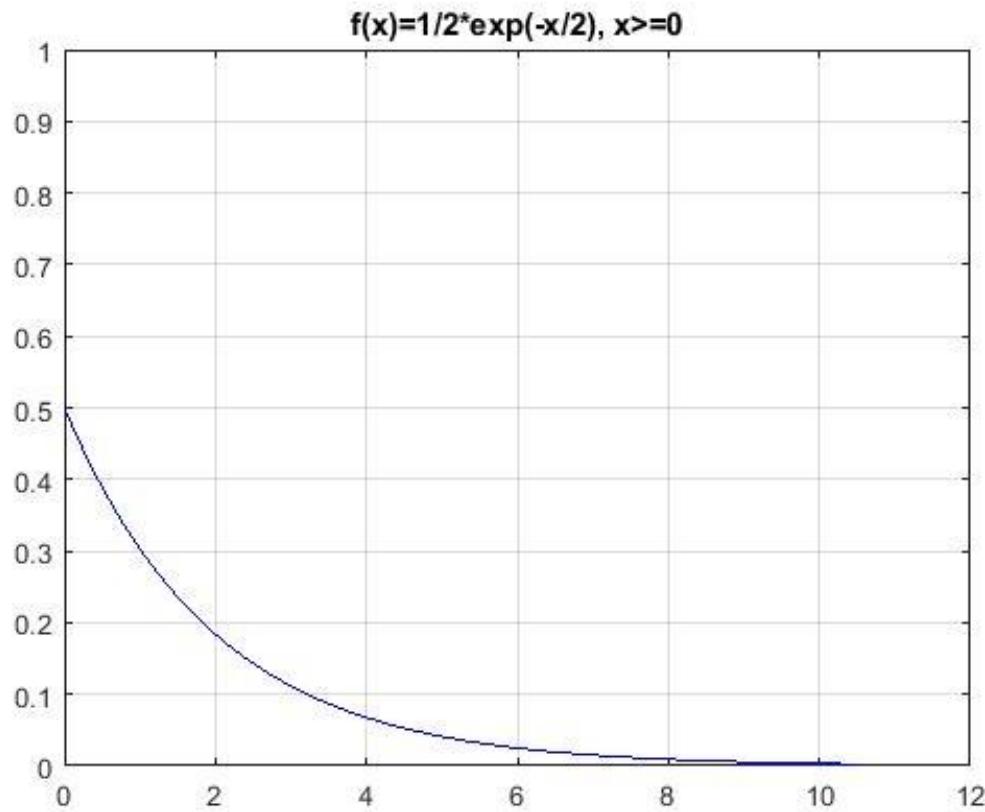
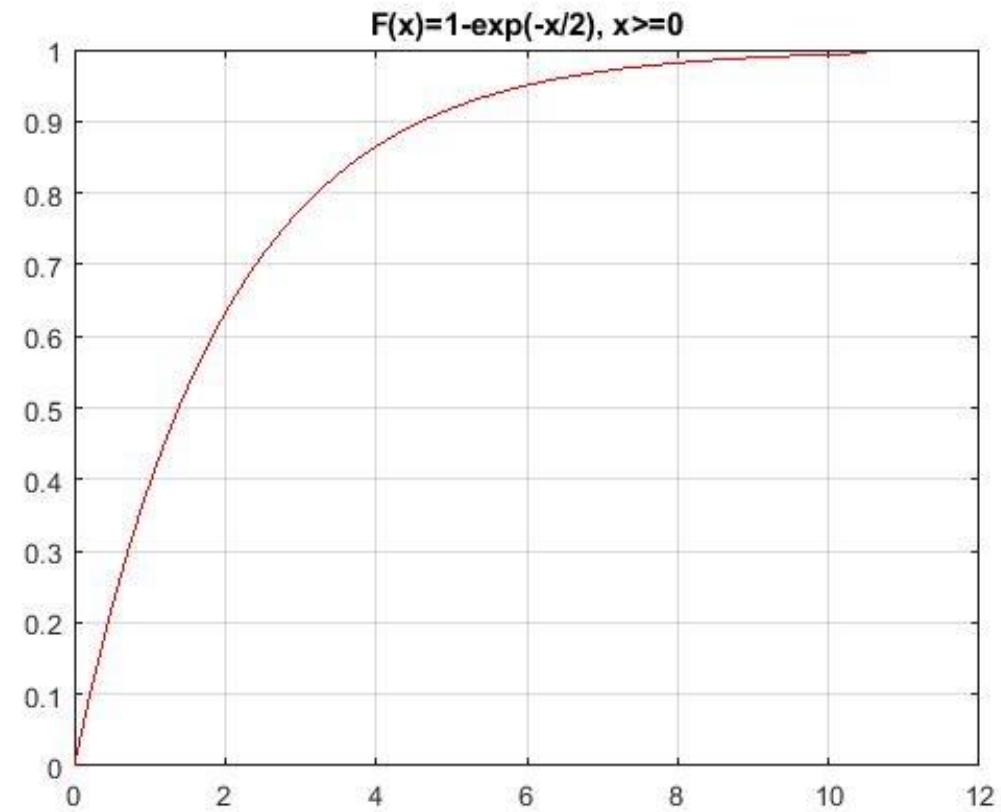
6. Continuous Random Variables

- Properties of p.d.f. (pdf) and c.d.f. (cdf):

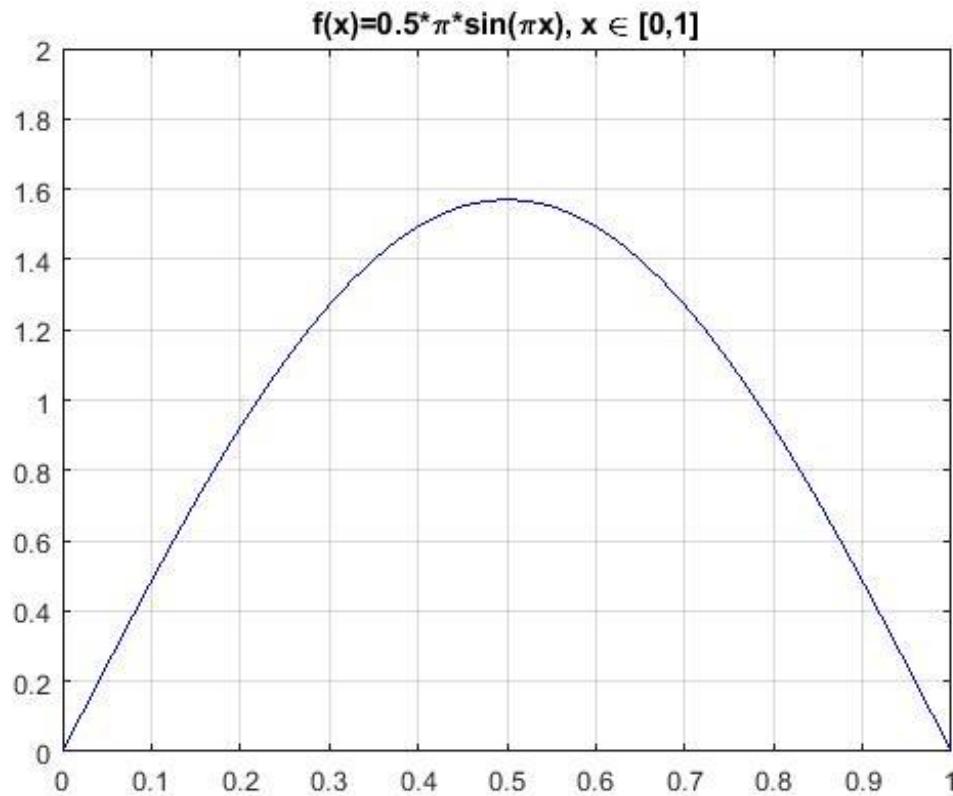
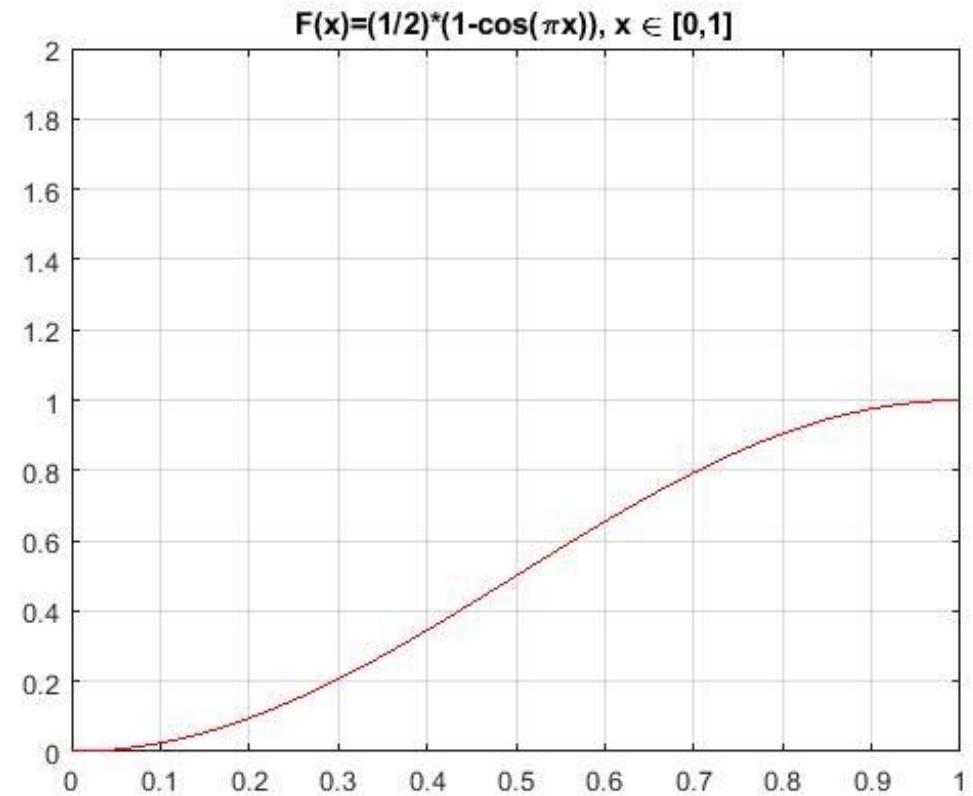
The probability density function (p.d.f.) f and its distribution function F of a continuous random variable X has the following properties.

- $F(t) = \int_{-\infty}^t f(x) dx$. $A = (-\infty, t]$, $F(t) = P(X \leq t) = P(X \in A)$.
- $P(X \in R) = \int_{-\infty}^{\infty} f(x) dx = 1$.
- If f is continuous, then $F'(x) = f(x)$.
- For $a \leq b$, $P(a \leq X \leq b) = \int_a^b f(x) dx$.
- $P(a < X < b) = P(a \leq X < b) = P(a < X \leq b) = P(a \leq X \leq b)$.

$f(x) = \frac{1}{2}e^{-x/2}$ and $F(x) = 1 - e^{-x/2}$ (pdf vs. cdf)



$$f(x) = \frac{\pi}{2} \sin(\pi x) \text{ vs. } F(x) = \frac{1}{2} (1 - \cos(\pi x))$$



Example 6.1 on P.245

Example 6.1 Experience has shown that while walking in a certain park, the time X , in minutes, between seeing two people smoking has a probability density function of the form

$$\bullet f(x) = \begin{cases} \lambda x e^{-x} & x > 0 \\ 0 & \text{otherwise} \end{cases}$$

- Calculate the value λ . Ans: $\lambda = 1$.
- Find the distribution function of X . $F(t) = 1 - (t + 1)e^{-t}$ if $t \geq 0$.
- What is the probability that Jeff, who has just seen a person smoking, will see another person smoking in 2 to 5 minutes? in at least 7 minutes? $P(2 < X < 5) \approx 0.37$, $P(X \geq 7) \approx 8e^{-7} \approx 0.007$.

Example 6.2 on P.246

(6.2)(a) Sketch the graph of the function

$$f(x) = \begin{cases} \frac{1}{2} - \frac{1}{4} |x - 3|, & 1 \leq x \leq 5 \\ 0 & \text{otherwise} \end{cases}$$

and show that it is the probability density function of a r.v. X .

(b) Find F , the distribution function of X , and sketch its graph.

(c*) Show that F is continuous.

Remark 6.1 on P.249.

Exercise 3 on P.250

3. The time it takes for a student to finish an aptitude test (in hours) has a probability density function of the form

$$f(x) = c(x - 1)(2 - x) \quad \text{if } 1 < x < 2$$

(a) Determine the constant c . Ans: $\int_1^2 f(x)dx = 1$, so $c = 6$.

(b) Calculate the distribution function of the time it takes for a randomly selected student to finish the aptitude test.

$$\text{Ans: } F(x) = \begin{cases} \int_1^x f(t)dt = -2x^3 + 9x^2 - 12x + 5 & \text{if } 1 < x < 2, \\ & \text{and } F(x) = 1 \text{ if } x \geq 2. \end{cases}$$

(a) What is the probability that a student will finish the aptitude test in less than 75 minutes (i.e., 1.25 hours)? Between 1.5 and 2 hours?

2. $F(x) = 1 - \frac{16}{x^2}$ if $x \geq 4$, and 0 otherwise. Then

$$(a) f(x) = \frac{32}{x^3} \text{ for } x \geq 4 \quad (b) \text{ Sketch } F \text{ and } f \text{ for } x \geq 4.$$

$$(c) P(5 < X < 7) = F(7) - F(5), (d) P(X \geq 6) = 1 - F(6) = \frac{16}{36} = \frac{4}{9}$$

Density Function of A Function of A R.V. (P.253)

In probability applications, we may face that the probability density function f of X is known but the p.d.f. $h(X)$ is needed. One of the solutions is to find the distribution function G of $Y=h(X)$ first and compute the p.d.f of $h(X)$ by $g(y)=G'(y)$.

Example (6.3) Let X be a continuous r.v. with the probability density function

$$f(x) = \begin{cases} \frac{2}{x^2}, & \text{if } 1 < x < 2 \\ 0, & \text{otherwise.} \end{cases}$$

The distribution function and p.d.f. of $Y = X^2$ can be calculated as

$$G(y) = P(Y \leq y) = P(X^2 \leq y) = P(1 < X \leq \sqrt{y}) = \int_1^{\sqrt{y}} \frac{2}{x^2} dx = 2 - \frac{2}{\sqrt{y}},$$
$$g(y) = G'(y) = \frac{1}{y\sqrt{y}} \text{ for } 1 < y < 4$$

Examples 6.4, 6.5 on P.254

(6.4) Let X be a continuous r.v. with p.d.f. f . In terms of f , find the distribution and probability density functions of $Y = X^3$.

Hint: $G(t) = P(Y \leq t) = P(X^3 \leq t) = P(X \leq \sqrt[3]{t}) = F(\sqrt[3]{t})$,
 $g(t) = G'(t)$.

(6.5) The error X of a measurement has the probability density function

$$f(x) = \begin{cases} \frac{1}{2} & \text{if } -1 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

Find the distribution and probability density functions of $Y = |X|$.

Theorem 6.1 Method of Transformations P.255

Let X be a continuous random variable with probability density function f_X and the set of possible values A . For the invertible function

$h: A \rightarrow R$, let $Y = h(X)$ be a random variable with the set of possible values $B=h(A)=\{h(a): a \in A\}$. Suppose that the inverse of $y = h(x)$ is the function $x = h^{-1}(y)$, which is *differentiable* for all values of $y \in B$. Then f_Y , the probability density function of Y , is given by

$$f_Y(y) = f_X(h^{-1}(y))|(h^{-1})'(y)|, \quad y \in B.$$

See the Proof on P.255

Hint: Compute $F(y) = P(Y = h(X) \leq y)$, then $f_Y(y) = F'(y)$.

Example 6.6 on P.256

6.6 Let X be a random variable with the probability density function

$$f_X(x) = \begin{cases} 2e^{-2x} & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$

The probability density function of $Y = \sqrt{X}$ is $f(y) = 4ye^{-2y^2}, y > 0$

Hint: $A = (0, \infty)$, $B = h(A) = (0, \infty)$

6.7 Let X be a random variable with the probability function

$$f_X(x) = \begin{cases} 4x^3 & \text{if } 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

The probability density function of $Y = 1 - 3X^2$ is $f(y) = \frac{2}{9}(1 - y), y \in (-2, 1)$

Hint: $A = (0, 1)$, and $B = h(A) = (-2, 1)$.

6.3 Expectations and Variances on P.259-264

Definition 6.2 If X is a continuous random variable with probability density function f , the expected value of X is defined as

$$E(X) = \int_{-\infty}^{\infty} xf(x)dx. \mu \text{ or } E[X] \text{ is an alternative notation.}$$

Definition 6.3 If X is a continuous random variable with $E(X) = \mu$, then $\text{Var}(X)$ and σ_X , called variance and standard deviation of X , respectively, are defined by

$$\text{Var}(X) = E[(X - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x)dx. \sigma_X = \sqrt{\text{Var}(X)}.$$

Examples of Expectation and Variance

(6.8) In a group of adult males, the difference between uric acid and 6, the standard value, is a random variable X with the following p.d.f.

$$f(x) = \frac{27}{490} (3x^2 - 2x) \quad \text{if } \frac{2}{3} < x < 3, \quad f(x) = 0 \quad \text{otherwise.}$$

Find the mean of these differences for the group, that is, $E(X)$. Ans: 2.36

(6.9) A random variable X with the following p.d.f. is called a Cauchy r.v.

$$f(x) = \frac{c}{1+x^2}, \quad -\infty < x < \infty$$

(a) Find c . $c=1/\pi$.

(b) Show that $E(X)$ does not exist.

Theorems 6.2, 6.3, Corollary, P.261-264 (Skip)

Theorem 6.2 $E(X) = \int_0^\infty [1 - F(t)] dt - \int_0^\infty F(-t)dt$

Remark 6.4

Theorem 6.3 $E(h(X)) = \int_{-\infty}^\infty h(x)f(x) dx$

Example 6.10 A point X is selected from $(0, \pi/4)$ randomly. Calculate $E(\cos 2X) = \frac{2}{\pi}$, and $E(\cos^2 X) = \frac{1}{2} + \frac{1}{\pi}$.

Remarks 6.5, 6.6., 6.7: About $E(X^{n+1})$

$E(X^n)$: The *n*th Moment of X

- Let X be a discrete r.v. with probability mass function $f(x)$, then
- $E(X^n) = \int_{-\infty}^{\infty} x^n f(x) dx$ is called the *n*th moment of X if it exists.
- When $n = 1$, $E(X)$ is the expected value or expectation.
- When $n = 2$, $E(X^2)$ is called the second moment.
- Note that $Var(X) = E(X^2) - (E[X])^2$
- Remark: $E(X^{n+1})$ exists implies that $E(X^n)$. See proof on p.184.

A6. Let X be a discrete r.v. with the set of possible values $\{x_1, x_2, \dots, x_n\}$; X is called uniform if $p(X = x_i) = \frac{1}{n}$, $1 \leq i \leq n$.

$E(X) = (n + 1)/2$ and $Var(X) = (n^2 - 1)/12$ for the case that $x_i = i$, $1 \leq i \leq n$.

Exercises A1,A6,A7,A10, B13,B14 on P.267-270

(A1) $F(x) = 1 - 16/x^2$ if $x \geq 4$, $F(x) = 0$ if $x < 4$. Then

(a) $E(X)=8$, (b) Show that $V(X)$ does not exist.

(A6) $f(x) = 3e^{-3x}$ if $0 \leq x < \infty$. Then $E(e^X) = \frac{3}{2}$.

(A7) $f(x) = \frac{1}{\pi\sqrt{1-x^2}}$ if $-1 < x < 1$. Then $E(X)=0$.

(A10) $f(x) = \frac{2}{x^2}$ if $1 < x < 2$. Then $E(\ln X) = 1 - \ln 2$.

(B13) $f(x) = \frac{1}{\pi(1+x^2)}$, if $-\infty < x < \infty$.

Prove that $E(|X|^\alpha)$ converges if $0 < \alpha < 1$ and diverges if $\alpha \geq 1$.

(B14) $P(X > t) = \alpha e^{-\lambda t} + \beta e^{-\mu t}$, $t \geq 0$, $\alpha + \beta = 1$. Then $E(X) = \frac{\alpha}{\lambda} + \frac{\beta}{\mu}$.