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O The Joint Probability Mass Functions and p.d.f.

e Let X and Y be two discrete random variables and let R be the corresponding space of X
and Y. The joint p.m.f. of X = x and Y = y, denoted by f(z,y) = P(X =z,Y =y),
has the following properties:

(a) 0< f(z,y) <1for (z,y) € R.
(b) E(:c,y)ER f(x,y) = 17
(c) P(A) =X (s yea f(z,y), where A CR.

e The marginal p.m.f. of X is defined as fx(z) =3, f(x,y) , for each x € R,.
e The marginal p.m.f. of Y is defined as fy(y) =X, f(z,y) , for each y € R,,.

e The random variables X and Y are independent iff (if and only if) f(z,y) = fx(x)fy(y)
for v € R,, y € R,.

Example 1. f(z,y) = (x +y)/21, 2z = 1,2,3; y = 1,2, then X and Y are not
independent.

Example 2. f(z,y) = (2y%)/30, x=1,2,3; y=1,2, then X and Y are independent.



The Joint Probability Density Functions

e Let X and Y be two continuous random variables and let R be the corresponding space
of X and Y. The joint p.d.f. of X = z and Y = y, denoted by f(z,y) = P(X =
x,Y =y), has the following properties:

(a) f(z,y) >0 for —oo<uz,y < 0.
(b) J2 J25 fl,y)dedy = 1.
(c) P(A)=[Ja[f(x,y), where ACR.

e The marginal p.d.f. of X is defined as fx(x) = [°2 f(z,y)dy, for = € R,.
e The marginal p.d.f. of Y is defined as fy(y) = [*5 f(z,y)dz, for y € R,

e The random variables X and Y are independent iff (if and only if) f(z,y) = fx(x)fy(y)
for v € R, y € R,.

Example 3. Let X and Y have the joint p.d.f.

3
fle,y)==2*(1—|y|), —1l<z<l —1l<y<l.
2

Let A= {(z,y)[0<x <1, 0 <y <z} Then

P(A) = J3 J§ 322(1 = p)dyde = [} 302 [y — %] do

Example 4. Let X and Y have the joint p.d.f.
flr,y) =2, 0<z<y<l
Thus R = {(z,y)|0 <2<y <1}. Let A={(z,9)[0 <2z <3, 0<y <31} Then

P(A) = P0<X<$0<Y <)) = POSX<Y,0<Y <})

= 1/2 IJ 2dzdy =

1
4

Furthermore,

Fx( /2dy-2(1—:z:) 0<z<1 and fy(y /2dx—2y, 0<y<l.



Independent Random Variables

The random variables X and Y are independent iff their joint probability function is the
product of their marginal distribution functions, that is,

f(x,ZU):fX(x)fY(y), v T,y

More generally, the random variables X1, X5, - - -, X,, are mutually independent iff their
joint probability function is the product of their marginal probability (density) functions,
ie.,

f(xhx??"'vxn):le(x1>fX2($2)"'an(l’n), V x1,29, -, 1,

(1) Let X; and X5 be independent Poisson random variables with respective means \; = 2
and Ay = 3. Then

(a) P(X;=3,X,=5)=P(X; =3)P(X; =5) = <22 x <23

3! 5!
(b) P(X1 + X, =1) = P(X; = 1)P(Xy = 0) + P(X; = 0)P(Xy = 1) = <2 x
6_330 6_220 6_331
+
o! 0! 1!

(2) Let X3 ~ 5(3,0.8) and X5 ~ b(5,0.7) be independent binomial random variables.
Then

) P(X) = 2,X, — 4) = P(X, = 2)P(X, = 4) — (g ) (0.8)2(1 — 0.8)32

(i) JA(1 — 0.7)7

) P(X1 + Xy = 7) = P(Xl = 2)P(X, = 5) 4+ P(X; = 3)P(Xy, = 4) =

( ) )© ) (1-08)" ( : ) (0.7)°(1=0.7)7" + ( ; ) (0.8)3(1 — 0.8)33 x
ol

b}

y )41 - 0.7)°"

(3) Let X; and X5 be two independent randome variables having the same exponential
distribution with p.d.f. f(z) =2e7%, 0 < z < co. Then

(a) E[Xi] = E[X,] = 05 and E[(X; — 0.5)] = E[(X5 — 0.5)2] = 0.25.
(b) P05 < Xy < 1.0, 0.7< X, <1.2) = ( 1'026—2%5) x ( 1'226—2%5)

0.5 0.7

(c) E[X1(X5—0.5)% = E[X1]E[(Xs — 0.5)2] = 0.5 x 0.25 = 0.125.



Covariance and Correlation Coefficient

For artibrary random variables X and Y, and constants a and b, we have
ElaX +bY]| = aE[X] + bE[Y]

Proof: We’'ll show for the continuous case, the discrete case can be similarly proved.

ElaX +0Y]| = /_O:O /_O:O(aa: +by) f(z,y)dxdy

= /_O:O /_O:Oaxf(x,y)d:vdy + /_O:O /_O:Obyf(x,y)dxdy

= /_O:Oax [/_O:Of(x,y)dy} dz + /_O:Oby [/_O:Of(x,y)dx] dy

= a/_o:oxfx(x)dx + b/_o:oyfy(y)dy

= aF[X]+bE[Y]
Similarly,
i=1 i=1
Furthermore,

E[XY]= /_O:O /_O:Oxyf(x,y)d:vdy

[Ezample] Let f(x,y) =3(x+y), 0<z <1, 0<y <2 and f(z,y) =0 elsewhere.

12 12 9
E[XY]—/O /Oa:yf(m,y)dyd:v—/o /Oxyg(aﬁLy)dydx—g

Let X and Y be independent random variables, then

EOY) = [~ [ aype@) e p)dedy = | |

[e.e]

@] [ [~ upwias] = BO-EW)
The covariance between r.v.’s X and Y is defined as

Coo(X,Y) = E(X—px)(Y =) = [ [ (@=po)y=pmy ) (0, y)dyda = B(XY)~puxcpy

If X and Y are independent r.v.s, then Cov(X,Y) = 0.

The correlation coefficient is defined by p(X,Y) = €2uXY)

oX0Yy



Expectation and Covariance Matrix

Let X1, X5, ..., X, be random variables such that the expectation, variance, and covariance
are defined as follows.

1 = B(X;), of =Var(X;) = E[(X; — 1;)?]

Cov(X;, X;) = E[(Xs — ) (X — p;)] = pijoio;

Suppose that X = [X;, X, ..., X,,]" is a random vector, then the expected mean vector
and covariance matrix of X is defined as

E(X> - [,uh:u%"'nu’n]t::u

Cov(X) = E[(X—pu)(X—p)]

= [E((Xi— w)( X5 — 1 ))]

Theorem 1: Let X7, Xs,..., X, be nindependent r.v.’s with respective means {x;} and

variances {0?}, then Y = ", a;X; has mean py = 37, a;u; and variance o2 =

" a?o?, respectively.
Theorem 2: Let X, Xy, ..., X, benindependent r.v.’s with respective moment-generating
functions {M;(t)}, 1 <i < n, then the moment-generating function of Y = ¥ | 4, X;
is My(t) = H?:l MZ(CLZt>



Multivariate (Normal) Distributions

¢ (Gaussian) Normal Distribution: X ~ N(u,c?)

1
fx(z) = f(z) = exp” TR for — 00 < 1 < 00

\V2mo?

mean and variance : E(X)=u, Var(X)= o>

¢ (Gaussian) Normal Distribution: X ~ N(u,C)

1
fx(x) = f(x) = (27)¥2[det(C)]1/2

e~ (x—wWCT (x—u)/2 for x € R?

mean vector and covariance matriz : E(X)=u, Cov(X)=C

¢ Simulate X ~ N(u, C)
(1) C = LL*, where L is lower-A.
(2) Generate y ~ N(0,1).
(3) x=u+Lxy
(4) Repeat Steps (2)and(3) M times.

% Simulate N([1 3]’, [4,2; 2,5])

yA

n=30;

X1=random(’normal’,0,1,n,1);
X2=random(’normal’,0,1,n,1);

Y=[ones(n,1), 3*ones(n,1)]+[X1,X2]*[2 1; 0, 2];
Yhat=mean(Y) 9 estimated mean vector
Chat=cov(Y) % estimated covariance matrix

% Z=[X1, X21;



Plot a 2D standard Gaussian Distribution

x=-3.6:0.3:3.6;

y=x’;

X=ones(length(y),1)*x;

Y=y*ones(1,length(x));

Z=exp(-(X."2+Y.72) /2+eps)/(2*pi);

mesh(Z) ;

title(CCf(x,y)= (1/2\pi)*exp[-(x"2+y~2)/2.0]17)

f(xy)= (L2nexp-(C+y)12.0]

0.2

0.15




Some Practical Examples

(1) Let X7, X5, and X3 be independent r.v.s from a geometric distribution with p.d.f.

=G -1

Then
(a)
PX1=1X=3X3=1) = P(Xi=1)P(X>=3)P(Xs5=1) = [f(1)f3)f(1)

(b)
P(Xi+Xo+X3=5) = 3P(X;=3,Xo=1,Xs=1)+3P(X; =2,Xo =2, X5 =

81
512

(c¢) Let Y = maz{X;, Xs, X3}, then

P(Y <2) = P(X, <2)P(X,<2)P(X; < ?2)

(2) Let the random variables X and Y have the joint density function
flz,y) = xe ™", >0,y>0

f(z,y) = 0 elsewhere

Then

(a) fx(z)= [Coe™ dy=¢" z>0; pux=1, ck =1

(b) fr(y) = ﬁ, y > 0; py =lim, . [In(1+y) — 1] does not exist.

(¢c) X and Y are not independent since f(x,y) # fx(x)fy(y).



PX+Y <1) = [} ( P xe‘xy—xdy) dx
= i — e 2ty
= Jledr —et x [[) e 2 dy

= 1—et—etx(fledt)

(3) Let (X,Y) be uniformly distributed over the unit circle {(z,y) : (2? +y?) < 1}. Its
joint p.d.f is given by
flay) = 7 2?2 +y2 <1

)

f(z,y) = 0 elsewhere

(a) P(X?+Y2< 1) =2.1

(b) {(z,y) : (x2 +y?) <1, z >y} is a semicircle, so P(X >Y) =1
(c) P(X=Y)=0.

(d) {(x, ) c (22 +9?) <1, x < 2y} is a semicircle, so P(Y < 2X) = 1

)
(e) Let R = X?+Y? then Fr(r)=P(R<r)=rifr <1,and Fr(r)=1ifr > 1.
)

(f) Compute fx(x) and fy(y) and show that Cov(X,Y) =0 but X and Y are not
independent.



10

Stochastic Process

Definition: A Bernoulli trials process is a sequence of independent and identically dis-
tributed (iid) Bernoulli r.v.’s Xy, Xy, -+, X,,. It is the mathematical model of n
repetitions of an experiment under identical conditions, with each experiment pro-
ducing only two outcomes called success/failure, head/tail, etc. Two examples are
described below.

(i) Quality control: As items come off a production line, they are inspected for defects. When the ith
item inspected is defective, we record X; = 1 and write down X; = 0 otherwise.

(ii) Clinical trials: Patients with a disease are given a drug. If the ith patient recovers, we set
X; =1 and set X; = 0 otherwise. are mutually independent.

A Bernoulli trials process is a sequence of independent and identically distributed (7id)
random variables X7, X, -+, X,,, where each X, takes on only one of two values, 0
or 1. The number p = P(X; = 1) is called the probability of success, and the number
g =1—p= P(X; = 0) is called the probability of failure. The sum T = Y _X; is

i=1
called the number of successes in n Bernoulli trials, where T ~ b(n, p) has a binomial
distribution.

Definition: {X(¢), t > 0} is a Poisson process with intensity A > 0 if

(i) For s > 0 and t > 0, the random variable X (s + t) — X(s) has the Poisson
distribution with parameter At, i.e.,

-\t k
PIX(t+s) — X(s) = K] :%, k=0,1,2,-

and

(ii) For any time points 0 =tg < t; < --- < t,,, the random variables
X(t) = X(to), X(t2) = X(tr), -+, X(tn) = X(tn)
are mutually independent.

The Poisson process is an example of a stochastic process, a collection of random
variables indexed by the time parameter t.



