Chapter 4. Multivariate Distributions

\& Joint p.m.f. (p.d.f.)
\& Independent Random Variables
\& Covariance and Correlation Coefficient
\& Expectation and Covariance Matrix
\& Multivariate (Normal) Distributions
\& Matlab Codes for Multivariate (Normal) Distributions
\& Some Practical ExamplesThe Joint Probability Mass Functions and p.d.f.

- Let X and Y be two discrete random variables and let R be the corresponding space of X and Y. The joint p.m.f. of $X=x$ and $Y=y$, denoted by $f(x, y)=P(X=x, Y=y)$, has the following properties:
(a) $0 \leq f(x, y) \leq 1$ for $(x, y) \in R$.
(b) $\sum_{(x, y) \in R} f(x, y)=1$,
(c) $P(A)=\sum_{(x, y) \in A} f(x, y)$, where $A \subset R$.
- The marginal p.m.f. of X is defined as $f_{X}(x)=\sum_{y} f(x, y)$, for each $x \in R_{x}$.
- The marginal p.m.f. of Y is defined as $f_{Y}(y)=\sum_{x} f(x, y)$, for each $y \in R_{y}$.
- The random variables X and Y are independent iff (if and only if) $f(x, y) \equiv f_{X}(x) f_{Y}(y)$ for $x \in R_{x}, y \in R_{y}$.

Example 1. $f(x, y)=(x+y) / 21, \quad x=1,2,3 ; \quad y=1,2$, then X and Y are not independent.

Example 2. $f(x, y)=\left(x y^{2}\right) / 30, \quad x=1,2,3 ; \quad y=1,2$, then X and Y are independent.

The Joint Probability Density Functions

- Let X and Y be two continuous random variables and let R be the corresponding space of X and Y. The joint p.d.f. of $X=x$ and $Y=y$, denoted by $f(x, y)=P(X=$ $x, Y=y$), has the following properties:
(a) $f(x, y) \geq 0$ for $-\infty<x, y<\infty$.
(b) $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$.
(c) $P(A)=\iint_{A} f(x, y)$, where $A \subset R$.
- The marginal p.d.f. of X is defined as $f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y$, for $\quad x \in R_{x}$.
- The marginal p.d.f. of Y is defined as $f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x$, for $y \in R_{y}$.
- The random variables X and Y are independent iff (if and only if) $f(x, y) \equiv f_{X}(x) f_{Y}(y)$ for $x \in R_{x}, y \in R_{y}$.

Example 3. Let X and Y have the joint p.d.f.

$$
f(x, y)=\frac{3}{2} x^{2}(1-|y|), \quad-1<x<1 . \quad-1<y<1
$$

Let $A=\{(x, y) \mid 0<x<1,0<y<x\}$. Then

$$
\begin{aligned}
P(A) & =\int_{0}^{1} \int_{0}^{x} \frac{3}{2} x^{2}(1-y) d y d x \\
& =\int_{0}^{1} \frac{3}{2} x^{2}\left[y-\frac{y^{2}}{2}\right]_{0}^{x} d x \\
& \frac{3}{2}\left[x^{3}-\frac{x^{4}}{2}\right] d x
\end{aligned}=\frac{3}{2}\left[\frac{x^{4}}{4}-\frac{x^{5}}{10}\right]_{0}^{1}=\frac{9}{40}
$$

Example 4. Let X and Y have the joint p.d.f.

$$
f(x, y)=2, \quad 0 \leq x \leq y \leq 1
$$

Thus $R=\{(x, y) \mid 0 \leq x \leq y \leq 1\}$. Let $A=\left\{(x, y) \left\lvert\, 0 \leq x \leq \frac{1}{2}\right., 0 \leq y \leq \frac{1}{2}\right\}$. Then

$$
\begin{aligned}
P(A)=P\left(0 \leq X \leq \frac{1}{2}, 0 \leq Y \leq \frac{1}{2}\right) & =P\left(0 \leq X \leq Y, 0 \leq Y \leq \frac{1}{2}\right) \\
& =\int_{0}^{1 / 2} \int_{0}^{y} 2 d x d y
\end{aligned}
$$

Furthermore,

$$
f_{X}(x)=\int_{x}^{1} 2 d y=2(1-x), \quad 0 \leq x \leq 1 \quad \text { and } \quad f_{Y}(y)=\int_{0}^{y} 2 d x=2 y, \quad 0 \leq y \leq 1
$$

Independent Random Variables

The random variables X and Y are independent iff their joint probability function is the product of their marginal distribution functions, that is,

$$
f(x, y)=f_{X}(x) f_{Y}(y), \quad \forall x, y
$$

More generally, the random variables $X_{1}, X_{2}, \cdots, X_{n}$ are mutually independent iff their joint probability function is the product of their marginal probability (density) functions, i.e.,

$$
f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right) \cdots f_{X_{n}}\left(x_{n}\right), \quad \forall x_{1}, x_{2}, \cdots, x_{n}
$$

(1) Let X_{1} and X_{2} be independent Poisson random variables with respective means $\lambda_{1}=2$ and $\lambda_{2}=3$. Then
(a) $P\left(X_{1}=3, X_{2}=5\right)=P\left(X_{1}=3\right) P\left(X_{2}=5\right)=\frac{e^{-2} 2^{3}}{3!} \times \frac{e^{-3} 3^{5}}{5!}$.
(b) $P\left(X_{1}+X_{2}=1\right)=P\left(X_{1}=1\right) P\left(X_{2}=0\right)+P\left(X_{1}=0\right) P\left(X_{2}=1\right)=\frac{e^{-2} 2^{1}}{1!} \times$ $\frac{e^{-3} 3^{0}}{0!}+\frac{e^{-2} 2^{0}}{0!} \times \frac{e^{-3} 3^{1}}{1!}$.
(2) Let $X_{1} \sim b(3,0.8)$ and $X_{2} \sim b(5,0.7)$ be independent binomial random variables. Then
(a) $P\left(X_{1}=2, X_{2}=4\right)=P\left(X_{1}=2\right) P\left(X_{2}=4\right)=\binom{3}{2}(0.8)^{2}(1-0.8)^{3-2} \times$ $\binom{5}{4}(0.7)^{4}(1-0.7)^{5-4}$
(b) $P\left(X_{1}+X_{2}=7\right)=P\left(X_{1}=2\right) P\left(X_{2}=5\right)+P\left(X_{1}=3\right) P\left(X_{2}=4\right)=$ $\binom{3}{2}(0.8)^{2}(1-0.8)^{3-2} \times\binom{ 5}{5}(0.7)^{5}(1-0.7)^{5-5}+\binom{3}{3}(0.8)^{3}(1-0.8)^{3-3} \times$
$\left(\begin{array}{l} \\ 4\end{array}\right)(0.7)^{4}(1-0.7)^{5-4}$
(3) Let X_{1} and X_{2} be two independent randome variables having the same exponential distribution with p.d.f. $f(x)=2 e^{-2 x}, \quad 0<x<\infty$. Then
(a) $E\left[X_{1}\right]=E\left[X_{2}\right]=0.5$ and $E\left[\left(X_{1}-0.5\right)^{2}\right]=E\left[\left(X_{2}-0.5\right)^{2}\right]=0.25$.
(b) $P\left(0.5<X_{1}<1.0, \quad 0.7<X_{2}<1.2\right)=\left(\int_{0.5}^{1.0} 2 e^{-2 x} d x\right) \times\left(\int_{0.7}^{1.2} 2 e^{-2 x} d x\right)$
(c) $E\left[X_{1}\left(X_{2}-0.5\right)^{2}\right]=E\left[X_{1}\right] E\left[\left(X_{2}-0.5\right)^{2}\right]=0.5 \times 0.25=0.125$.

Covariance and Correlation Coefficient

For artibrary random variables X and Y, and constants a and b, we have

$$
E[a X+b Y]=a E[X]+b E[Y]
$$

Proof: We'll show for the continuous case, the discrete case can be similarly proved.

$$
\begin{aligned}
E[a X+b Y] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(a x+b y) f(x, y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} a x f(x, y) d x d y+\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} b y f(x, y) d x d y \\
& =\int_{-\infty}^{\infty} a x\left[\int_{-\infty}^{\infty} f(x, y) d y\right] d x+\int_{-\infty}^{\infty} b y\left[\int_{-\infty}^{\infty} f(x, y) d x\right] d y \\
& =a \int_{-\infty}^{\infty} x f_{X}(x) d x+b \int_{-\infty}^{\infty} y f_{Y}(y) d y \\
& =a E[X]+b E[Y]
\end{aligned}
$$

Similarly,

$$
E\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i} E\left(X_{i}\right)
$$

Furthermore,

$$
E[X Y]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f(x, y) d x d y
$$

[Example] Let $f(x, y)=\frac{1}{3}(x+y), \quad 0<x<1,0<y<2$, and $f(x, y)=0$ elsewhere.

$$
E[X Y]=\int_{0}^{1} \int_{0}^{2} x y f(x, y) d y d x=\int_{0}^{1} \int_{0}^{2} x y \frac{1}{3}(x+y) d y d x=\frac{2}{3}
$$

- Let X and Y be independent random variables, then

$$
E(X Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X}(x) f_{Y}(y) d x d y=\left[\int_{-\infty}^{\infty} x f_{X}(x) d x\right] \cdot\left[\int_{-\infty}^{\infty} y f_{Y}(y) d y\right]=E(X) \cdot E(Y)
$$

- The covariance between r.v.'s X and Y is defined as

$$
\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) f(x, y) d y d x=E(X Y)-\mu_{X} \mu_{Y}
$$

- If X and Y are independent r.v.s, then $\operatorname{Cov}(X, Y)=0$.
- The correlation coefficient is defined by $\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}$

Expectation and Covariance Matrix

Let $X_{1}, X_{2}, \ldots, X_{n}$ be random variables such that the expectation, variance, and covariance are defined as follows.

$$
\begin{gathered}
\mu_{j}=E\left(X_{j}\right), \quad \sigma_{j}^{2}=\operatorname{Var}\left(X_{j}\right)=E\left[\left(X_{j}-\mu_{j}\right)^{2}\right] \\
\operatorname{Cov}\left(X_{i}, X_{j}\right)=E\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]=\rho_{i j} \sigma_{i} \sigma_{j}
\end{gathered}
$$

Suppose that $\mathbf{X}=\left[X_{1}, X_{2}, \ldots, X_{n}\right]^{t}$ is a random vector, then the expected mean vector and covariance matrix of \mathbf{X} is defined as

$$
\begin{aligned}
E(\mathbf{X}) & =\left[\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right]^{t}=\mu \\
\operatorname{Cov}(\mathbf{X}) & =E\left[(\mathbf{X}-\mu)(\mathbf{X}-\mu)^{t}\right] \\
& =\left[E\left(\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right)\right]
\end{aligned}
$$

Theorem 1: Let $X_{1}, X_{2}, \ldots, X_{n}$ be n independent r.v.'s with respective means $\left\{\mu_{i}\right\}$ and variances $\left\{\sigma_{i}^{2}\right\}$, then $Y=\sum_{i=1}^{n} a_{i} X_{i}$ has mean $\mu_{Y}=\sum_{i=1}^{n} a_{i} \mu_{i}$ and variance $\sigma_{Y}^{2}=$ $\sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}$, respectively.

Theorem 2: Let $X_{1}, X_{2}, \ldots, X_{n}$ be n independent r.v.'s with respective moment-generating functions $\left\{M_{i}(t)\right\}, 1 \leq i \leq n$, then the moment-generating function of $Y=\sum_{i=1}^{n} a_{i} X_{i}$ is $M_{Y}(t)=\prod_{i=1}^{n} M_{i}\left(a_{i} t\right)$.

Multivariate (Normal) Distributions

\diamond (Gaussian) Normal Distribution: $X \sim N\left(u, \sigma^{2}\right)$

$$
\begin{gathered}
f_{X}(x)=f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp ^{-(x-u)^{2} / 2 \sigma^{2}} \quad \text { for }-\infty<x<\infty \\
\text { mean and variance }: E(X)=u, \quad \operatorname{Var}(X)=\sigma^{2}
\end{gathered}
$$

\diamond (Gaussian) Normal Distribution: $X \sim N(\mathbf{u}, C)$

$$
f_{X}(\mathbf{x})=f(\mathbf{x})=\frac{1}{(2 \pi)^{d / 2}[\operatorname{det}(C)]^{1 / 2}} e^{-(\mathbf{x}-\mathbf{u})^{t} C^{-1}(\mathbf{x}-\mathbf{u}) / 2} \quad \text { for } \quad \mathbf{x} \in R^{d}
$$

mean vector and covariance matrix : $E(X)=\mathbf{u}, \quad \operatorname{Cov}(X)=C$
\diamond Simulate $\mathbf{X} \sim N(\mathbf{u}, C)$
(1) $C=L L^{t}$, where L is lower- Δ.
(2) Generate $\mathbf{y} \sim N(\mathbf{0}, I)$.
(3) $\mathbf{x}=\mathbf{u}+L * \mathbf{y}$
(4) Repeat Steps (2)and(3) M times.

```
% Simulate N([1 3]', [4,2; 2,5])
%
n=30;
X1=random('normal', 0,1,n,1);
X2=random('normal', 0,1,n,1);
Y=[ones(n,1), 3*ones(n,1)]+[X1,X2]*[2 1; 0, 2];
Yhat=mean(Y) % estimated mean vector
Chat=cov(Y) % estimated covariance matrix
% Z=[X1, X2];
```


Plot a 2D standard Gaussian Distribution

```
x=-3.6:0.3:3.6;
y=x';
X=ones(length(y),1)*x;
Y=y*ones(1,length(x));
Z=exp(-(X.^2+Y.^2)/2+eps)/(2*pi);
mesh(Z);
title('f(x,y)= (1/2\pi)*exp[-(x^2+y^2)/2.0]')
```


Some Practical Examples

(1) Let X_{1}, X_{2}, and X_{3} be independent r.v.s from a geometric distribution with p.d.f.

$$
f(x)=\left(\frac{3}{4}\right)\left(\frac{1}{4}\right)^{x-1}, \quad x=1,2, \cdots
$$

Then
(a)

$$
\begin{aligned}
P\left(X_{1}=1, X_{2}=3, X_{3}=1\right) & =P\left(X_{1}=1\right) P\left(X_{2}=3\right) P\left(X_{3}=1\right) \\
=\left(\frac{3}{4}\right)^{3}\left(\frac{1}{4}\right)^{2} & =f(1) f(3) f(1) \\
& =\frac{27}{1024}
\end{aligned}
$$

(b)

$$
\begin{aligned}
P\left(X_{1}+X_{2}+X_{3}=5\right) & =3 P\left(X_{1}=3, X_{2}=1, X_{3}=1\right)+3 P\left(X_{1}=2, X_{2}=2, X_{3}=1\right) \\
& =\frac{81}{512}
\end{aligned}
$$

(c) Let $Y=\max \left\{X_{1}, X_{2}, X_{3}\right\}$, then

$$
\begin{aligned}
P(Y \leq 2) & =P\left(X_{1} \leq 2\right) P\left(X_{2} \leq 2\right) P\left(X_{3} \leq 2\right) \\
& =\left(\frac{3}{4}+\frac{3}{4} \cdot \frac{1}{4}\right)^{3} \\
& =\left(\frac{15}{16}\right)^{3}
\end{aligned}
$$

(2) Let the random variables X and Y have the joint density function

$$
\begin{aligned}
& f(x, y)=x e^{-x y-x}, \quad x>0, y>0 \\
& f(x, y)=0 \text { elsewhere }
\end{aligned}
$$

Then
(a) $f_{X}(x)=\int_{0}^{\infty} x e^{-x y-x} d y=e^{-x}, x>0 ; \quad \mu_{X}=1, \sigma_{X}^{2}=1$.
(b) $f_{Y}(y)=\frac{1}{(1+y)^{2}}, y>0 ; \quad \mu_{Y}=\lim _{y \rightarrow \infty}[\ln (1+y)-1]$ does not exist.
(c) X and Y are not independent since $f(x, y) \neq f_{X}(x) f_{Y}(y)$.
(d)

$$
\begin{aligned}
P(X+Y \leq 1) & =\int_{0}^{1}\left(\int_{0}^{1-x} x e^{-x y-x} d y\right) d x \\
& =\int_{0}^{1}\left(e^{-x}-e^{-2 x+x^{2}}\right) d x \\
& =\int_{0}^{1} e^{-x} d x-e^{-1} \times\left[\int_{0}^{1} e^{1-2 x+x^{2}} d x\right] \\
& =1-e^{-1}-e^{-1} \times\left(\int_{0}^{1} e^{t^{2}} d t\right)
\end{aligned}
$$

(3) Let (X, Y) be uniformly distributed over the unit circle $\left\{(x, y):\left(x^{2}+y^{2}\right) \leq 1\right\}$. Its joint p.d.f is given by

$$
\begin{aligned}
& f(x, y)=\frac{1}{\pi}, \quad x^{2}+y^{2} \leq 1 \\
& f(x, y)=0 \text { elsewhere }
\end{aligned}
$$

(a) $P\left(X^{2}+Y^{2} \leq \frac{1}{4}\right)=\frac{\pi}{4} \cdot \frac{1}{\pi}$.
(b) $\left\{(x, y):\left(x^{2}+y^{2}\right) \leq 1, x>y\right\}$ is a semicircle, so $P(X>Y)=\frac{1}{2}$.
(c) $P(X=Y)=0$.
(d) $\left\{(x, y):\left(x^{2}+y^{2}\right) \leq 1, x<2 y\right\}$ is a semicircle, so $P(Y<2 X)=\frac{1}{2}$.
(e) Let $R=X^{2}+Y^{2}$, then $F_{R}(r)=P(R \leq r)=r$ if $r<1$, and $F_{R}(r)=1$ if $r \geq 1$.
(f) Compute $f_{X}(x)$ and $f_{Y}(y)$ and show that $\operatorname{Cov}(X, Y)=0$ but X and Y are not independent.

Stochastic Process

Definition: A Bernoulli trials process is a sequence of independent and identically distributed (iid) Bernoulli r.v.'s $X_{1}, X_{2}, \cdots, X_{n}$. It is the mathematical model of n repetitions of an experiment under identical conditions, with each experiment producing only two outcomes called success/failure, head/tail, etc. Two examples are described below.
(i) Quality control: As items come off a production line, they are inspected for defects. When the i th item inspected is defective, we record $X_{i}=1$ and write down $X_{i}=0$ otherwise.
(ii) Clinical trials: Patients with a disease are given a drug. If the $i t h$ patient recovers, we set $X_{i}=1$ and set $X_{i}=0$ otherwise. are mutually independent.

A Bernoulli trials process is a sequence of independent and identically distributed (iid) random variables $X_{1}, X_{2}, \cdots, X_{n}$, where each X_{i} takes on only one of two values, 0 or 1. The number $p=P\left(X_{i}=1\right)$ is called the probability of success, and the number $q=1-p=P\left(X_{i}=0\right)$ is called the probability of failure. The sum $T=\sum_{i=1}^{n} X_{i}$ is called the number of successes in n Bernoulli trials, where $T \sim b(n, p)$ has a binomial distribution.

Definition: $\{X(t), t \geq 0\}$ is a Poisson process with intensity $\lambda>0$ if
(i) For $s \geq 0$ and $t>0$, the random variable $X(s+t)-X(s)$ has the Poisson distribution with parameter λt, i.e.,

$$
P[X(t+s)-X(s)=k]=\frac{e^{-\lambda t}(\lambda t)^{k}}{k!}, \quad k=0,1,2, \cdots
$$

and
(ii) For any time points $0=t_{0}<t_{1}<\cdots<t_{n}$, the random variables

$$
X\left(t_{1}\right)-X\left(t_{0}\right), X\left(t_{2}\right)-X\left(t_{1}\right), \cdots, X\left(t_{n}\right)-X\left(t_{n-1}\right)
$$

are mutually independent.
The Poisson process is an example of a stochastic process, a collection of random variables indexed by the time parameter t.

