Partial Solutions

- **1.** Let $A, B \in \mathbb{R}^{n \times n}$ be $upper \Delta$. Show that C = AB is also $upper \Delta$.
- **Proof:** Denote $A = [a_{ik}]$, $B = [b_{kj}]$, and $C = [c_{ij}]$, where $1 \le i, j, k \le n$. Since A, B are upper triangular, then $a_{ik} = 0$ for i > k and $b_{kj} = 0$ for k > j.

By definition $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$, we can write c_{ij} as follows

$$c_{ij} = \sum_{k=1}^{i-1} a_{ik} b_{kj} + \sum_{k=i}^{n} a_{ik} b_{kj}$$

Because A and B are both $upper - \Delta$, for i > j, we have $a_{ik} = 0$ since $i > k \ge 1$ in the first term of the above summation and $b_{kj} = 0$ since $k \ge i > j$ in the second term of the above summation. Thus, $c_{ij} = 0$ for $1 \le j < i \le n$. Hence, C is also $upper - \Delta$.

4. Gaussian elimination algorithm for solving a tridiagonal linear system.

```
for i=1:n-1
    d(i+1)=d(i+1)-[(b(i+1)/d(i))*c(i)];
    f(i+1)=f(i+1)-[(b(i+1)/d(i))*f(i)];
end
x(n)=f(n)/d(n);
for k=n-1:-1:1
    x(k)=(f(k)-c(k)*x(k+1))/d(k);
end
```

5.

- (1) Since $y(x) = xe^x$, then $y' = y'(x) = e^x + xe^x$ and $y'' = y''(x) = 2e^x + xe^x$, thus $-y'' + (1+x)y = -2e^x xe^x + (1+x)xe^x = -2e^x + x^2e^x$ by simple operations. Moreover, $y(0) = 0 \cdot e^0 = 0$ and $y(1) = 1 \cdot e^1 = e$.
- (2) Let $z(x) = y_1(x) y_2(x)$, where $y_1(x)$ and $y_2(x)$ are two solutions, we want to prove that $y_1(x) = y_2(x)$ by showing that $z(x) = 0 \ \forall x \in [0, 1]$. Since $z(0) = y_1(0) y_2(0) = 0 0 = 0$ and $z_1(1) = y_1(1) y_2(1) = e e = 0$ and $z^{"}_1 = (y_1)^{"}_1 (y_2)^{"}_2 = \cdots = (1+x)(y_1 y_2) = (1+x)z$, hence $-z^{"}_1 + (1+x)z = 0$.