Partial Solutions

1. Let $A, B \in R^{n \times n}$ be upper $-\Delta$. Show that $C=A B$ is also upper $-\Delta$.

Proof: Denote $A=\left[a_{i k}\right], B=\left[b_{k j}\right]$, and $C=\left[c_{i j}\right]$, where $1 \leq i, j, k \leq n$. Since A, B are upper triangular, then $a_{i k}=0$ for $i>k$ and $b_{k j}=0$ for $k>j$.
By definition $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$, we can write $c_{i j}$ as follows

$$
c_{i j}=\sum_{k=1}^{i-1} a_{i k} b_{k j}+\sum_{k=i}^{n} a_{i k} b_{k j}
$$

Because A and B are both upper $-\Delta$, for $i>j$, we have $a_{i k}=0$ since $i>k \geq 1$ in the first term of the above summation and $b_{k j}=0$ since $k \geq i>j$ in the second term of the above summation. Thus, $c_{i j}=0$ for $1 \leq j<i \leq n$. Hence, C is also upper $-\Delta$.
4. Gaussian elimination algorithm for solving a tridiagonal linear system.

```
for i=1:n-1
    d(i+1)=d(i+1)-[(b(i+1)/d(i))*c(i)];
    f(i+1)=f(i+1)-[(b(i+1)/d(i))*f(i)];
end
x(n)=f(n)/d(n);
for k=n-1:-1:1
    x(k)=(f(k)-c(k)*x(k+1))/d(k);
end
```

5.

(1) Since $y(x)=x e^{x}$, then $y^{\prime}=y^{\prime}(x)=e^{x}+x e^{x}$ and $y^{\prime \prime}=y^{\prime \prime}(x)=2 e^{x}+x e^{x}$, thus $-y^{\prime \prime}+(1+x) y=-2 e^{x}-x e^{x}+(1+x) x e^{x}=-2 e^{x}+x^{2} e^{x}$ by simple operations. Moreover, $y(0)=0 \cdot e^{0}=0$ and $y(1)=1 \cdot e^{1}=e$.
(2) Let $z(x)=y_{1}(x)-y_{2}(x)$, where $y_{1}(x)$ and $y_{2}(x)$ are two solutions, we want to prove that $y_{1}(x)=y_{2}(x)$ by showing that $z(x)=0 \forall x \in[0,1]$. Since $z(0)=y_{1}(0)-y_{2}(0)=$ $0-0=0$ and $\left.z_{(} 1\right)=y_{1}(1)-y_{2}(1)=e-e=0$ and $z "=\left(y_{1}\right) "-\left(y_{2}\right) "=\cdots=$ $(1+x)\left(y_{1}-y_{2}\right)=(1+x) z$, hence $-z "+(1+x) z=0$.

