
View-Independent Object-Space Surface Splatting

Chun-Fa Chang∗ Yung-Feng Chiu†

Computer Science Department,
National Tsing Hua University, Taiwan

Wei-zhi Liao‡

Figure 1: Various test models (chameleon, face, male, tiny) are rendered using view-independent object-space surface splatting.

Abstract

Elliptical weighted average (EWA) surface splatting is an im-
portant technique for producing high-quality point-based render-
ing. With the proliferation of programmable graphics hard-
ware, many methods have been proposed recently to implement
hardware-accelerated EWA surface splatting on modern consumer-
level graphics hardware. However, we notice that those methods
tend to rely heavily on customized vertex programs (or shaders)
and fragment programs. Many hardware functions such as the mul-
tisampling and anisotropic texture filtering features that could be
equally useful for both triangle-based rendering and point-based
rendering are seldom put to use in current EWA surface splatting
methods. In this work, we propose a simple yet effective change to
the EWA surface splatting method by removing the low-pass filter
from the resampling process. The low-pass filtering is then taken
care of by multisampling (for full-scene antialiasing). This simple
change effectively extracts the screen-space issues out of the EWA
surface splatting problem. Therefore, the remaining parts of EWA
surface splatting become purely object-space problems which are
much easier to solve. For example, perspective accurate splatting
which requires special attention in some screen-space surface splat-
ting algorithms is easily achieved as long as the hardware supports
perspective-correct interpolation. Other hardware features such as
anisotropic texture filtering can be easily added as well. Our re-
sults show the rendering quality is comparable to those produced
with resampling filters with tightly-coupled low-pass filters. We
also achieve rendering speed of about 6 million splats per second.

∗e-mail: chunfa@cs.nthu.edu.tw
†e-mail: yfchiu@ibr.cs.nthu.edu.tw
‡e-mail: demon@ibr.cs.nthu.edu.tw

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms—; I.3.6 [Computer Graphics]:
Methodology and Techniques—Graphics Data Structures and Data
Types—;

Keywords: graphics hardware, antialiasing, point-based rendering

1 Introduction

With the recent advances in image-based modeling and 3D scan-
ning techniques, point-based models have become an alternative or
even the preferred choice to triangle-based models in many appli-
cations. Not too long (about 3-5 years) ago, the traditional triangle-
based rendering pipeline was not considered flexible enough to
produce hardware-accelerated high-quality point-based rendering.
Special hardware features for point-based rendering such as those
in [Popescu et al. 2000] were then proposed. With the proliferation
of programmable graphics hardware, high-quality point-based ren-
dering based on elliptical weighted average (EWA) surface splatting
[Zwicker et al. 2001] [Ren et al. 2002] is now possible on modern
graphics hardware. However, we notice that many hardware func-
tions (such as the antialiasing and texture filtering features) that are
originally designed for triangle-based rendering are under-utilized
for point-based rendering. For examples, the multisampling (for
antialiasing) and anisotropic texture filtering [McCormack et al.
1999] [Schilling et al. 1996] features could be equally useful for
both triangle-based rendering and point-based rendering, but they
are seldom put to use in current EWA surface splatting methods.

In this work, we propose a simple change to the EWA surface splat-
ting method by removing the low-pass filter from the resampling
process. The low-pass filtering is then taken care of by the multi-
sampling (or full-scene antialiasing) feature. Other hardware fea-
tures such as anisotropic texture filtering can be easily added as well
for removing aliasing artifact of texture mapping objects. While
the idea is simple, it effectively extracts the screen-space issues out
of the EWA surface splatting problem. Therefore, the remaining
parts of EWA surface splatting become a purely object-space prob-
lem which is much easier to solve. For example, it is much easier
to produce a perspective-accurate splatting in object space without
having to choose between either accurate outline or accurate center,

a problem well described in Figure 2 of [Zwicker et al. 2004].

Our results show the rendering quality is comparable to those pro-
duced by the original EWA surface splatting methods (with low-
pass filters tightly-coupled to resampling filters). We also achieve
rendering speed of about 6 million splats per second.

2 Related Work

Surfels [Pfister et al. 2000] is an important data representation for
point-based graphics. Surfels are usually stored in Layered Depth
Cubes (LDC) which can then be extended to a hierarchical repre-
sentation [Chang et al. 1999] [Pfister et al. 2000] [Rusinkiewicz
and Levoy 2000] [Botsch et al. 2002] [Dachsbacher et al. 2003].
An LDC consists of three orthogonally projected Layered Depth
Images (LDI). A limitation of the LDI is that it does not work well
with surfaces at grazing angles. If those surfaces are sampled from
the LDI grid points, they will be undersampled. If they are sampled
from another view and then warped to the LDI, some LDI pixels
will inevitably contain large number of layers. In an LDC, we do
not have those problems because the surfaces are sampled from the
grid points of three LDIs. A surface might be undersampled in one
LDI (or even two LDIs) but not in all three LDIs. However, by
sampling a surface three times, an LDC may consume nearly three
times as much memory as an LDI.

Surfel-based models are usually rendered by surface splatting
[Zwicker et al. 2001]. Based on the theorem of signal process-
ing, surface splatting produces output images of extremely high
quality. Surface splatting reconstructs the surfaces by conceptually
considering surfels as tangent-space ellipses with Gaussian alpha
fall-offs. During rendering, aliasing may occur when some of those
ellipses are projected to small areas in screen space. For example,
some ellipses might be so small that they fall between screen pixel
grids and are totally missed during resampling. Therefore, a low-
pass pre-filter must be applied when those ellipses are rendered and
resampled in screen space. In addition, a separate rendering pass
which is often called visibility splatting is necessary to prevent the
occluded surfels from being incorrectly blended.

Ren et al. introduced an object-space surface splatting method in
[Ren et al. 2002]. In their method, a texture-mapped polygon that
represents the resampling filter is constructed for each surfel in ob-
ject space. The texture-mapped polygon is formed by warping the
screen-space low-pass filter to the object space and then convolv-
ing with the reconstruction filter (i.e. the tangent-space ellipse).
Due to the low-pass filter, the construction of surfel polygons be-
comes a view-dependent problem in the object-space surface splat-
ting method. This prevents the surfel polygons to be constructed at
a preprocessing step.

In Ren’s method and this work, four vertices per splat are presented
to the graphics hardware. Rendering methods using one vertex per
splat was presented by Botsch and Kobbelt [2003] and Guennebaud
and Paulin [2003]. Those methods use affine approximation to
the projective mapping to compute the splatting footprint in screen
space. This simplification may lead to holes in the image, when the
model is viewed from extremely flat angles and is shifted away from
the main view axis. This problem was addressed by Zwicker et al.
[2004], but they still need to choose between either accurate outline
or accurate center. Most of those methods need to correct the depth
value per pixel which bounds their rendering performance.

Hierarchical representations for point clouds [Chang et al. 1999]
[Pfister et al. 2000] [Rusinkiewicz and Levoy 2000] [Botsch et al.

2002] [Coconu and Hege 2002]can improve the rendering effi-
ciency. However, those implementations are all software-based and
add a heavily load on CPU. Dachsbacher et al. [2003] present se-
quential point trees (SPT), a hierarchical point representation allow-
ing adaptive rendering of point clouds completely on the graphics
processor unit (GPU) sequentially. But their approach draws each
splat as a square, hence the quality could be improved by applying
Gaussian-like filters.

The above mentioned methods vary in performance and quality of
rendering. The reported performance ranges from 2-3M splats/sec
[Ren et al. 2002] to about 50M splats/sec [Dachsbacher et al. 2003].
However, many of them sacrificed rendering quality for achieving
better performance. In Table 1, we compare their rendering qual-
ity based on whether correct splat shape, alpha blending, low-pass
filter, visibility splatting are used. Our method achieve rendering
quality that is similar to [Ren et al. 2002] at a faster speed.

3 Object-Space EWA Surface Splatting

In this section, we briefly review the object-space EWA surface
splatting. We use the same notations as in [Ren et al. 2002]. First,
we focus on screen-space EWA surface splatting. Let{Pk} be the
set of points in 3D object space without connectivity. It is associ-
ated with a radially symmetric basis functionrk as a reconstruction
filter defined on a locally parameterized domains and a coefficient
wk(wr

k,w
g
k,w

b
k) that represent continuous functions for red, green

and blue color components. We define the continuous surface func-
tion fc(u) as the weighted sum:

fc(u) = ∑
k∈N

wkrk(u−uk) (1)

Given an input function as in Equation (1) and an affine approxima-
tion of the perspective projection from parameter space to screen
space at each pointx = m(u) : R2 → R2, fc(u) is warped to screen
space bym, yielding the continuous screen space output function
gc(x):

gc(x) = fc ◦m−1(x) = fc(m−1(x)) (2)

Then the continuous screen-space output functiongc(x) is band-
limited by convolving it with a prefilterh, yielding the output func-
tion g′c(x):

g′c(x) = gc(x)⊗h(x) (3)

Finally, we sample the continuous output functiong′c(x) by multi-
plying it with an impulse traini to produce the discrete outputg(x):

g(x) = g′c(x)i(x) (4)

We replace a projection mappingm(u) by its local affine approx-
imation mk at a pointuk and write the output functiong′c(x) as a
weighted sum of screen space resampling filtersρk(x):

g′c(x) = ∑
k∈N

wkρk(x) (5)

where
ρk(x) = (r ′k⊗h)(x−mk(uk)) (6)

Hence, the resampling filterρk(x) is expressed as a convolution of
a warped basis functionr ′k = rk(m−1(x)) and the prefilterh(x). The
local affine approximationmk is given by the Taylor expansion of
m atuk, truncated at the linear term:

mk(u) = xk +Jk · (u−uk) (7)

Method splats/sec splat shape alpha blending low-pass filter visibility splatting
[Ren et al. 2002] 2-3M ellipse Yes Yes Yes

Our method 5-6M ellipse Yes Yes Yes
[Botsch and Kobbelt 2003] 10M ellipse Yes No Yes
[Dachsbacher et al. 2003] 50M square No No No

Table 1: Rendering quality and performance comparison.

wherexk = m(uk) and the JacobianJk = ∂m
∂u (uk) ∈ R2x2. In Equa-

tion (6), we have expressed the screen space resampling filter. Now,
we rearrange it to get the object-space resampling filterρ ′k(x):

ρk(x) = (r ′k⊗h)(x−mk(uk))

= (r ′k⊗h)(mk(m−1
k (x))−mk(uk))

= (r ′k⊗h)(Jk(m−1
k (x)−uk))

= (rk⊗h′)(u−uk)) = ρ ′k(x) (8)

The object-space resampling filter consists of the convolution of
an original radially symmetric basis functionrk(u) and a warped
prefilter h′k(u) = |Jk|h(Jk(u)). As in [Ren et al. 2002], elliptical
Gaussians are chosen for both the basis functions and the low-pass
filter. Gaussians are closed under affine mapping and convolution,
hence the resampling filter can be expressed as a single Gaussian.
Let Gv(x) be a Gaussian with variance matrixV:

Gv(x) =
1

2π|V| 1
2

e−
1
2 xTV−1x (9)

where|V| is the determinant ofV. A typical choice for variance
matrix of prefilterh is the identity matrixI . Let Vr

k be the vari-
ance matrix of the basis functionsrk, then the object-space EWA
resampling filter is shown as:

ρ ′k(u) = G
Vr

k +J−1
k J−1

k
T (u−uk) (10)

Finally, we use Equation (10) to reformulate the continuous func-
tion as shown in Equation (5) as a weighted sum of object-space
EWA resampling filter:

g′c(x) = ∑
k∈N

wkG
V r

k +J−1
k J−1

k
T (m−1(x)−uk) (11)

4 View-Independent Object-Space Surface
Splatting

Given the widespread use of surfels and surface splatting, we take
a closer look at various design choices in the surfel representation
and its rendering. We think it is possible to make surfel quads view
independent if we can eliminate the need for the low-pass filter.
Our approach is simple: we omit the low-pass filter and rely on the
full-scene antialiasing (multisampling) feature of modern graphics
hardware. In a sense, the low-pass filter is not eliminated. Its role
is simply assumed by the multisampling function of graphics hard-
ware. Our object space resampling filter is shown as:

ρk(u) = GVr
k
(u−uk) (12)

Then, we substitute Equation (12) to the continuous function as
shown in Equation (2) as a weighted sum of object-space resam-
pling filter:

gc(x) = ∑
k∈N

wkGVr
k
(m−1(x)−uk) (13)

wherem is a perspective projection mapping.

Finally, we take sub-samples at the pixel level to solve the aliasing
problem.

g′(x) = ∑
i∈N

wig(xi) (14)

whereg(xi) is theith sub-pixel with the weightwi .

The above is performed by graphics hardware that supports multi-
sampling. The number of subsamples and how the subsamples are
filtered (with wi) to produce the pixel color vary with each hard-
ware. Since one purpose of the multisampling function is to ap-
proximate the low-pass filter for proper full-scene antialiasing, it
can practically replace the the prefilterh(x) in Equation (3).

For texture-mapped point-based objects, we can also rely on
the anisotropic texture-filtering feature that becomes common in
graphic hardware. Rendering texture-mapped point-based models
is different from rendering surfels that contain pre-filtered texture
colors [Zwicker et al. 2001]. For example, if a splat covers many
screen pixels (or fragments), each rendered pixel (fragment) will
trigger a texture evaluation that may require a texture filtering from
a footprint area.

Again, having view-independent surfel polygons in object space
greatly simplifies our problem. We simply apply two textures to
the surfel polygons: one texture for the reconstruction kernel (with
alpha fall-off) and the other texture for the image texture. When the
surfel polygon is rasterized, the anisotropic texture filtering func-
tion of graphics hardware automatically computes the appropriate
footprint area in the texture space for each rendered fragment. Fig-
ure 2 compares the rendering quality produced by our method us-
ing hardware multisampling and anisotropic texture filtering to the
quality produced by EWA surface splatting. In the following sec-
tions, we describe the detail of our point-based rendering pipeline.

4.1 Construction of Surfels

First, we generate surfels and store them in an LDC by ray trac-
ing. Rays are created for LDI grid points by orthogonal projec-
tion. Each ray-surface intersection creates a surfel, so we record its
depth, color (or texture coordinates), and normal vector. We do not
build a LDC tree because our purpose is to investigate the quality
of our proposed rendering algorithms. Then, we assign surfels to
LDC faces based on the maximum magnitude of theNx,Ny,Nz co-
ordinates of the normal vectors which is different from the 3-to-1
reduction described in [Pfister et al. 2000] and the redundant surfel
elimination technique described in [Zwicker 2003]. An 2D example
is shown in Figure 3. As we can see in Figure 3(b), the resampling
process alters the positions of the point samples. Also, for surfaces
that form grazing angles to the LDI plane, the sample points con-
centrate on only a few LDI grid points, thus produce long lists of
pixels. In our representation, the normal vectors tell us which of the
three LDIs has a better view of the surface. We still use three LDIs
in each LDC, but each LDI now contains roughly one third of the
sample points. Figure 3(c) shows an 2D example of our proposed

Figure 2: Left: The checker and text boards rendered us-
ing multisampling (sample=4) and anisotropic texture filtering
(anisotropy=8).Right: The same models rendered using EWA sur-
face splatting.

representation. Table 2 shows the number of surfels for each sur-
fel elimination technique. From the comparison of each reduction
technique in Figure 4, our surfel representation makes LDC more
memory efficient while maintaining the same image quality. Fig-
ure 5 shows another comparison of rendering quality among these
reduction techniques.

Figure 3: These figures show in 2D how surface sample points are
stored in an LDC. Black dots are the samples that are stored in the
right-side LDI and white squares are stored in the bottom-side LDI.
(a) The original surfel representation without any reduction. (b)
The original surfel representation after 3-to-1 reduction. (c) Our
proposed representation.

Model Original 3-to-1 Zwicker’s Our
Tiny 311,028 180,947 271,682 177,782
Tiger 206,064 140,203 180,282 136,143

Butterfly 251,897 212,943 251,480 224,144

Table 2: Number of surfels in four different LDC representations.

Finally, we extend the surfel to a surfel quad and its size and orienta-
tion are determined from the LDI grid resolution (which represents
the sampling density) and its normal vector for each LDI separa-
tively. Figure 6 illustrates an example to construct surfel quad for
the surfel belonging to XY-plane of the LDC with positionP(X, Y,
Z), normalN(Nx,Ny,Nz) under the sampling densityH.

Figure 4: LDC representation comparison for a realistic model
among three reduction techniques (ours, 3-to-1, Zwickers). Red,
green and blue colors show 3 directional LDI separately.Top-
Left: Without any reduction.Top-Right: Our normal reduction.
Bottom-Left: 3-to-1 reduction.Bottom-Right: Zwicker’s normal
reduction causing an overlap region.

P1 = (X +H/2,Y−H/2,(Z+(Nx/Nz−Ny/Nz)×H))
P2 = (X−H/2,Y−H/2,(Z+(−Nx/Nz−Ny/Nz)×H))
P3 = (X−H/2,Y +H/2,(Z+(−Nx/Nz+Ny/Nz)×H))
P4 = (X +H/2,Y +H/2,(Z+(Nx/Nz+Ny/Nz)×H))

Figure 6: Construct a surfel quad in object space.

4.2 Visibility Splatting

To correctly accumulate the filter weights from surfels and recon-
struct the represented surfaces, additive alpha blending is used.
However, without hidden surface removal, the filter weights from
occluded surfaces would be incorrectly accumulated too. There-
fore, surface splatting requires an extra pass called visibility splat-
ting before the normal rendering pass. Our visibility splatting
method is similar to [Ren et al. 2002]. During this pass, it fills
the depth buffer by rendering the surfel quad (with a circular mask
map) slightly shifted away from the viewer by an offsetε.

4.3 Color Splatting

To render a surfel, we convert a surfel into an object-space quad
with a 2D Gaussian alpha map that represents the reconstruction
filter. If the surface is not textured, then the surfel color is mod-
ulated by the alpha texture map. Our approach is similar to the

Figure 5: Comparison of each reduction techniques for Butterfly model.Left: 3-to-1 reduction.Middle: Zwicker’s normal reduction.Right:
Our normal reduction.

object-space EWA surface splatting [Ren et al. 2002] except that
our surfel quads can be built at a pre-processing step. In [Ren et al.
2002], they warp the screen-space low-pass filter to the object space
and convolve it with the reconstruction filter. We omit that step be-
cause we use the full-scene antialiasing (multisampling) feature of
graphics hardware to do the low-pass filtering. That makes the con-
struction of surfel quads a view-independent problem, which could
be performed at pre-processing time.

As pointed out by [Zwicker et al. 2004], Gaussians are closed under
affine mapping, but not under projective mapping. Since we omit
the step to warp the screen-space low-pass filter to the object space,
our surfel quad contains perspective-accurate projection of a Gaus-
sian map, which is demonstrated in Figure 7. It is easily achieved in
our method as long as the graphics hardware supports perspective-
correct interpolation, yet another benefit of our view-independent
framework.

Figure 7: Left: Perspective correct center.Right: Our approach
leads to perspective correct splat shape.

4.4 Texture Mapped Point-Based Objects

For textured surfaces, we apply two textures (one is the alpha tex-
ture map and the other is the model’s texture image) to the surfel
quads. There is difference between rendering textured-mapped sur-
fels and rendering surfels that pre-filter the texture and store the
filtered colors with the surfels. When a surfel covers more than
one fragment on the screen, each fragment will trigger a texture
lookup during rasterization. Therefore, it is natural to rely on the
graphics hardware to obtain a well-filtered texture color for the frag-
ment. Nowadays, anisotropic texture filtering is common in graph-
ics hardware. It dramatically improves visual quality where texture
minification in thesandt directions is radically different.

4.5 Weight Normalization

Ideally, with hidden surface removal and additive alpha blending,
the sum of filter weights equal to one for pixels in screen space.
Unfortunately, the reconstruction kernels in screen space do not al-
ways form a partition of unity, which causes visible artifacts. As
discussed in [Ren et al. 2002], the accumulated filter weights do
not always sum up to one in general. There are two main reasons
that the reconstruction kernels do not form a partition of unity. First,
we usually use a Gaussian filter that is truncated to a finite support.
Second, the reconstruction kernel operates on the tangent space.
That does not bode well for surface areas with high curvature. We
only perform per-pixel normalization on those pixels whose sum-
mation of filter weights is not close to unity or larger than a thresh-
old ε to avoid edge aliasing for silhouette edge pixels.

We know that the RGB color model is based on a Cartesian coor-
dinate system, the color subspace of interest is the unit cube. How-
ever, the normalization operation will change the pixel color due to
nonlinear operation ”div”. In spite of the fact that the accumulated
filter weights do not always sum up to one in general, our experi-
ments show that our accurate splat shape and center accumulate the
filter weights more closely to a partition of unity than the previous
affine approximations. More on this when we present our results
(Figure??).

5 Implementation

We have implemented both our method and the algorithms
in [Ren et al. 2002] with OpenGL. All vertex and frag-
ment programs are implemented using ARBvertexprogram and
ARB fragmentprogram hardware vender independent extensions
or using the more platform-independent language Cg [Mark et al.
2003]. We also put the geometries of the model into video mem-
ory via ARB vertexbuffer object extension to avoid traffic load be-
tween CPU and GPU for each drawn primitive. In order to utilize
the hardware vertex cache function we build an extra index buffer
and arrange the geometry data in interleaved vertex layout. We
construct surfel quads during pre-processing using the formulas de-
scribing in Figure 6, with each vertex containing attributes such as
normals and colors (or texture coordinates) in addition to its posi-
tion.

Our rendering algorithm has three passes: visibility splatting pass,
color splatting pass and normalization pass. In visibility splatting
pass, the vertex program compute the depth offset in view space and

we also turn on alpha test function to discard pixels outside the el-
liptical. The Cg shader program for visibility splatting computation
is listed as follows:

p.xyzw= mul(modelview matrix, IN.position);
p.xyz= normalize(p.xyz)∗ (length(p.xyz)+ ε);
OUT.position= mul(pro jectionmatrix, p);

In color splatting pass, we turn on multisampling function
via ARB multisample extension and accumulate the weighted
contributions of splat using blending modes in the form of
(∑i αi(rgb)i ,∑i αi) via EXT blend func separate extension. For
texture-mapped surfaces, we also turn on anisotropic texture-
filtering to automatically compute the appropriate footprint
area in the texture space for each rendered fragment via
EXT anisotropicfilter extension. Except the reasons described
in Section 4.5, the rendering quality also relies on the floating-
point precision and saturation-free pixel accumulation but the al-
pha blending function on current generation of GPUs is limited to
fixed-point precision. Hence, in the normalization pass, we perform
per-pixel normalization on those pixels whose summation of filter
weights is not close to unity and is greater than a thresholdε to
avoid artifacts in silhouette edge pixels.

In order to allow non-power-two window-sized rectangle, we use
EXT texturerectangle extension. Table 3 shows the instruction
numbers of Cg shader program at each pass. Lower instruction
numbers imply potentially more rendering speed.

6 Results

The results we present are all measured on a PC running Windows
XP with a 2.4GHz Pentium 4 processor, 512 MB RAM, AGP 8X
and a ATI Radeon 9600 Pro GPU. In order to test the antialiasing
quality in our method, we render a checkerboard and a text-board
to compare with those produced with resampling filters containing
tightly-coupled low-pass filters (Figure 10).

As shown previously in Figure 7, our surfel quads contain Gaussian
alpha maps that are correctly projected to screen space, leading to
both the correct outer splat contour and the correct splat center for
any viewing position. The reconstructed continuous screen-space
output function as expressed in Equation (13) is more accurate than
those by using affine approximation approach. As illustrated in
[Zwicker et al. 2004], incorrect splat shape may lead to holes in
the rendered image when the model is viewed from a flat angle and
shifted sufficiently from the viewing axis. This artifact is shown in
Figure 9 for those extreme viewing positions. Also, the incorrect
splat center and the overlapped splat shape caused by the affine ap-
proximation affect the color distribution within the splat. This is the
reason why the resampling filters using affine approximation favor
over-blurring the colors over aliasing artifacts, as shown in Figure
8.

Finally, we compare the rendering performance between our
method and Ren’s method in Table 4. We render 4M to 6M sur-
fels per second which is twice of Ren’s approach. Figure 1 shows
more rendering results of some complex textured models.

7 Conclusions and Future Work

Object-space EWA surface splatting [Ren et al. 2002] allows high-
quality surface splatting [Zwicker et al. 2001] to take advantage of
the graphics pipeline. In this work, our approach fully exploits the

Figure 8: Real-world models (male and chameleon) illustrate Ren’s
approach favoring over-blurring the texture over aliasing artifacts.
Left: Models are rendered with multisampling (sample=4).Right:
Models are rendered using Ren’s approach.

capabilities of graphics hardware for point-based rendering by uti-
lizing the multisampling and anisotropic texture filtering features.
This leads to a larger common hardware feature set for both point-
based rendering and triangle-based rendering, which could simply
the hardware design in the future. Our method also leads to simpler
and shorter vertex programs and fragment programs, which trans-
lates to better performance.

We could further embed hierarchical representations into our frame-
work to improve the splat rate. Our method can also be extended
to support animated point-based models. For next generation of
graphic hardware, floating-point precision may become available
for alpha blending. That will allow us to further improve the qual-
ity of rendered images.

References

BOTSCH, M., AND KOBBELT, L. 2003. High-quality point-based
rendering on modern gpus. InProceedings of the 11th Pa-
cific Conference on Computer Graphics and Applications, IEEE
Computer Society, 335–346.

BOTSCH, M., WIRATANAYA , A., AND KOBBELT, L. 2002. Effi-
cient high quality rendering of point sampled geometry. InPro-
ceedings of the 13th Eurographics workshop on Rendering, Eu-
rographics Association, 53–64.

CHANG, C.-F., BISHOP, G., AND LASTRA, A. 1999. Ldi tree:
a hierarchical representation for image-based rendering. InPro-
ceedings of the 26th annual conference on Computer graphics
and interactive techniques, ACM Press/Addison-Wesley Pub-
lishing Co., 291–298.

COCONU, L., AND HEGE, H.-C. 2002. Hardware-accelerated
point-based rendering of complex scenes. InProceedings of the
13th Eurographics workshop on Rendering, Eurographics Asso-
ciation, 43–52.

Method Visibility splatting Color splatting Normalization
VP FP VP FP VP FP

Our method 15 - 5 - - 8
[Ren et al. 2002] 17 - 74 - - 8

[Zwicker et al. 2004] 151 28 164 22 - 4
[Guennebaud and Paulin 2003] 29 5 45 5 - 3

Table 3: Comparison of the number of instructions needed for each pass.

Model Points Texture-mapped Our [Ren et al. 2002]
(5122) (10242) (5122) (10242)

Face 40,880 No 112 66 36 32
Chameleon 101,685 No 53 41 16 14

Tiger 136,143 Yes 40 32 12 11
Male 148,138 No 37 30 11 11
Tiny 177,782 Yes 32 27 9 8

Butterfly 224,144 Yes 26 22 8 8
Checkerboard 263,682 Yes 22 20 6 5

Table 4: Performance comparison between our and Ren’s approaches (frame per second).

Figure 9:Left: Our approach is hole-free.Right: Affine approx-
imations lead to holes in the reconstruction for extreme view posi-
tions.

DACHSBACHER, C., VOGELGSANG, C., AND STAMMINGER , M.
2003. Sequential point trees.ACM Trans. Graph. 22, 3, 657–
662.

GUENNEBAUD, G., AND PAULIN , M. 2003. Efficient screen space
approach for Hardware Accelerated Surfel Rendering. InVision,
Modeling and Visualization, Munich, IEEE Signal Processing
Society, 1–10.

MARK , W. R., GLANVILLE , R. S., AKELEY, K., AND K ILGARD ,
M. J. 2003. Cg: a system for programming graphics hardware
in a c-like language.ACM Trans. Graph. 22, 3, 896–907.

MCCORMACK, J., PERRY, R., FARKAS, K. I., AND JOUPPI, N. P.
1999. Feline: fast elliptical lines for anisotropic texture map-
ping. In Proceedings of the 26th annual conference on Com-
puter graphics and interactive techniques, ACM Press/Addison-
Wesley Publishing Co., 243–250.

PFISTER, H., ZWICKER, M., VAN BAAR , J., AND GROSS, M.
2000. Surfels: surface elements as rendering primitives. InPro-
ceedings of the 27th annual conference on Computer graphics
and interactive techniques, ACM Press/Addison-Wesley Pub-
lishing Co., 335–342.

POPESCU, V., EYLES, J., LASTRA, A., STEINHURST, J., ENG-
LAND , N., AND NYLAND , L. 2000. The warpengine: an archi-
tecture for the post-polygonal age. InProceedings of the 27th
annual conference on Computer graphics and interactive tech-
niques, ACM Press/Addison-Wesley Publishing Co., 433–442.

REN, L., PFISTER, H., AND ZWICKER, M. 2002. Object space
ewa surface splatting: A hardware accelerated approach to high
quality point rendering.cgforum 21, 3 (Sept.). (Proc. Eurograph-
ics 2002).

RUSINKIEWICZ, S., AND LEVOY, M. 2000. Qsplat: a multireso-
lution point rendering system for large meshes. InProceedings
of the 27th annual conference on Computer graphics and inter-
active techniques, ACM Press/Addison-Wesley Publishing Co.,
343–352.

SCHILLING , A., KNITTEL , G., AND STRASSER, W. 1996.
Texram: A smart memory for texturing.IEEE Comput. Graph.
Appl. 16, 3, 32–41.

ZWICKER, M., PFISTER, H., VAN BAAR , J., AND GROSS, M.
2001. Surface splatting. InProceedings of the 28th annual con-
ference on Computer graphics and interactive techniques, ACM
Press, 371–378.

ZWICKER, M., RÄSÄNEN, J., BOTSCH, M., DACHSBACHER, C.,
AND PAULY, M. 2004. Perspective accurate splatting. InPro-
ceedings of the 2004 conference on Graphics interface, Cana-
dian Human-Computer Communications Society, 247–254.

ZWICKER, M. 2003. Continuous reconstruction, rendering,
and editing of point-sampled surfaces. Ph.D. Dissertation. No.
15135, University of ETH Zurich, Department of Computer Sci-
ence.

Model Points (5122) (10242)
Normal -Pass1 -Pass2 -Pass3Normal -Pass1 -Pass2 -Pass3

Face 40,880 112 188 178 130 66 87 91 96
Chameleon 101,685 53 96 90 56 41 63 61 52

Tiger 136,143 40 76 70 43 32 50 52 39
Male 148,138 37 70 66 39 30 47 49 36
Tiny 177,782 32 60 56 33 27 42 43 31

Butterfly 224,144 26 54 45 27 22 38 37 24
Checkerboard 263,682 22 45 38 23 20 36 32 22

Table 5: Performance analysis for our approach (frame per second).

Model Points (5122) (10242)
Normal -Pass1 -Pass2 -Pass3Normal -Pass1 -Pass2 -Pass3

Face 40,880 36 44 166 38 32 37 99 36
Chameleon 101,685 16 18 79 17 14 16 60 15

Tiger 136,143 12 14 60 12 11 13 49 12
Male 148,138 11 13 56 12 11 12 45 11
Tiny 177,782 9 11 47 10 8 10 40 9

Butterfly 224,144 8 9 38 8 8 9 33 8
Checkerboard 263,682 6 8 33 6 5 6 29 5

Table 6: Performance analysis for Ren’s approach (frame per second).

Figure 10: The image quality comparison between our and Ren’s approach.Left: The model rendered without multisampling and anisotropic
texture filtering.Middle: The model rendered with multisampling (sample=4) and anisotropic texture filtering (anisotropy=8).Right: The
model rendered using Ren’s approach.

