T-Java
Threads

AVda F naamen I O

E Threads

Thread States

A Thread’s Life

Sleep()

Thread Safe

Thread Synchronization
wait() and notify()

Thr U

* A thread of control (thread) is a flow of control
within a program

« Java programs may use multiple threads

* Different threads can access instance variables
but not local variables

javalang.Thread e« A thread object represents a real
@ thread in the Java interpreter
* The thread object is a handle for
controlling the real thread
* The thread object start() method
executes a run() method in a
particular specified object

A Thread’s Life

Class A implements Runnable { 'Thread

1 Thread myThread = new Thread (A) || CreateS:> @Start()

myThread.start () ;

myThread

3 public void run() { | *

4|

e On return from the run() method, the thread myThread terminates
e If the run() method never returns, the thread lives on even after the

application that created it has finished (i.e., main() returns)

T-Java

Ing Multiple Threac

Class FlowManager {
-£:2==;- Client client = new Client ();

------,client.start (); // synchronous call so wait
// client responded so continue

Thread

@

(5)

client.stop();

g
—*—rzjj Class Client implements Runnable { putlic void run () {
! while (running) {
t-r----» public void start () { // do work
i // create a new thread, start it }

||m<__

public void stop () {
running = false; // stops thread

Application 1 Application 2

yield()
start() /\‘

S Runnable
ncw...
» New Thread
stop() or Not
. . Runnable
/stop() run() exits
Deprecated b A,x"/ stop()
Dead

e start() causes this thread to begin execution; the Java Virtual Machine
calls the run() method of this thread.

e yield() causes the currently executing thread object to temporarily pause
and allow other threads to execute

T-Java

The sleep() methoc

* The sleep() method can force a thread to be idle
for a period of time

long delay = 10000; // milliseconds

try
// sleep() is a static method
Thread.sleep(delay) ;

}

catch (InterruptedException e) {
// someone woke us up prematurely

}

- Some other thread can throw the
InterruptedException to cause the sleeping
thread to resume immediately

T-Java

Thr q‘

* Thread safe programming is necessary when
data can be modified by more than one thread at
a time

* |[f multiple clients can change shared server data,
a thread-safe design is needed

update items array @
" Server

orderItems|[] items;

clientl update items array

O—

client2

0 Methoc

* In Java, every class and every instance of a class
has a lock associated with it
* The synchronized keyword identifies places

where a thread must acquire the lock before
proceeding

r|||Z|n C

Class A {

static synchronized void wvalidate () {
}

static synchronized void restore () {
}

synchronized voild update() {

}

synchronized voild replace () {

}

Thr U

* All static synchronized methods in a class use

nchronization

the same class object lock

| static synchronized
request m_'
@ () method1() { ... }
Class
*| Object
@ request? L —— J

. Request2 IS blocked "~ static synchronized
until request1 returns
from synchronized
static method1

method2() { ... }

Thr U

* For each object of a class, all synchronized
instance methods use the same instance object

| non-static synchronized
request m_'
@ () method1() { ... }
Instance
*| Object
@ request?2 L Lock J

nchronization

. Request2 IS blocked N non-static synchronized
until request1 returns
from synchronized
Instance method

method2() { ... }

Thre U

* The synchronized keyword can be used to guard
arbitrary blocks of code @

@ requestl X @_ A

z method1() {
ﬁ // do some sHuff

instance |, obtain lock
object | @
lock

nchronization

synchromzed(ob]) {

* Request?2 is blocked at
the synchronized block)
until request1 exits the
synchronized block

W| ANA NQ |f

* The Object class wait() and notify() methods
enable a thread to give up its lock and to walit
for another thread to give it back before
proceeding

Class A {

g:%ﬁﬂaﬂllOCk synchronized void update () {
s // do some stuff

. ive up lock wait (); Thread:
l “(‘3{?{;& P // re-acquire lock Sleeping
lock } @ A

synchronized void replace () {

@obtain lock A Glo Seime SeblEE

notify();
// do more things

} @Wake up
thread

Synchronized access to ArrayList elements

Class Producer {
synchronized void putMessage () {
// do some stuff

while (noRoomForMessage) {
—————————————— »wait (); // give up lock

: // re—acquire lock

: messages.add (msgl) ; .
R notify () ; Key | Object
o J

o — 1 msg 1
o 2 msg2
o . . 3 msg3
! synchronized void getMessage () {

o // do some stuff

while (noMessage) {
| mmmm——m - »wailt (); // give up lock

: // re—acquire lock
! messages.remove (msgl) ;
- - - - R notify();

/ do more things

H Navigate to T-Java\Exercises\exp65a...

mmar

* A thread is a flow of control

Key Terms
within a program
Thread
* You can create threads Thread’s life
» Threads execute the run() Tlhfead states
sleep
method “thread safe”
» synchronized keyword synchronization
identifies places where a fj;fhmmzed keyword
thread must acquire the lock notify

before proceeding

 Object locks control synchronization
» Walit() releases the object lock

