
Page 1

• Introduction
– band join

» R.A - c1 < S.B < R.A + c2
– partitioned band join

» goal : minimize number of disk accesses
– Sort-merge band join

» combining final merge phase with join phase

• Partitioned band join algorithm
– choose partition size

» randomly sampling R
» select partition elements

!Kolmogorov test statistic [W.J.Conover 71]

» number of partitions
– perform partitioning without sorting

» use range-vector
» overlap

!Li - c1 < S.B < Hi + c2

– compute subjoins between Ri and Si
» binary search on sorted inner partition



Page 2

• Uniprocessor environment
– equal relation sizes : figure 1.
– relation sizes differ : figure 2.
– GP : grace partitioned band join algorithm
– HP : hybrid partitioned band join algorithm



Page 3

• Multiprocessor environment
– parallel hybrid partitioned band join

» each processor randomly samples
» coordinator determines partitioning elements
» each processr re-distributes local fragment

– problem
» how to correctly and efficiently sample inner relation

in parallel to determine partitioning elements

• Experiment results
– scaleup : slight increase in response time

» duplicate initiating tasks
» effects of short-circuiting messages diminish
» skew in size of subjoins

!sampling time vs. execution time

– speedup : not perfectly linear
» overhead of scheduling operators
» same factors as cases in scaleup



Page 4

• Conclusions
– hash-based equijoin vs. partitioned band join

» hash bucket vs. sort inner partition
» table lookup vs. binary search
» sampling overhead

– suitable cases
» a fraction of relation fits in memory
» relation sizes are different



Page 5

• Introduction
– multiple-query scheduling

» optimize a set of queries together
» share some operations within queries
» examples : shared build or shared probe

• Sharing operators
– select

» apply each predicate in turn for each tuple
– join

» hybrid hash-join algorithm
!sharing build phase

» multiprocessor join algorithm
!joins involving same relation on different join attributes

– sort, aggregates, group-by, duplicate elimination



Page 6

• Batch scheduling
– aim : find a global schedule for all queries without

violating partial order constraints
– workload : single hash join queries
– cost metric : total number of I/Os

• Algorithms
– Non-sharing algorithm
– Exhaustive algorithm

» select a global ordering of queries
» choose building relations
» determine order of flush of relations in memory

– Heuristic algorithms
» select next building relation

!ranking functions : ProbSize, ProbSubBuild,
ProbDivBuild

» select next relation to flush
!Largest, LowRank, HighRank



Page 7

• Simulation
– shared-nothing model
– comparison

» ratio of batch size to number of relations : figure 1.
!memory requirement
!replication tuples

» sensitivity to system memory : figure 2.
!naive algorithm gains due to parallelism

» non-uniform relation usage : figure 3.
!skewed distribution has higher potential for sharing

• Future work


