A common pseudo-random number generation technique is called the linear congruential method. If the last pseudo-random number generated was L, then the next number is generated by evaluating (Z x L + I) mod M, where Z is a constant multiplier, I is a constant increment, and M is a constant modulus. For example, suppose Z is 7, I is 5, and M is 12. If the first random number (usually called the seed) is 4, then we can determine the next few pseudo-random numbers are follows:
Last Random Number, L | (Z×L+I) | Next Random Number, (Z×L+I) mod M ----------------------|---------|---------------------------------- 4 | 33 | 9 9 | 68 | 8 8 | 61 | 1 1 | 12 | 0 0 | 5 | 5 5 | 40 | 4As you can see, the sequence of pseudo-random numbers generated by this technique repeats after six numbers. It should be clear that the longest sequence that can be generated using this technique is limited by the modulus, M.
In this problem you will be given sets of values for Z, I, M, and the seed, L. Each of these will have no more than four digits. For each such set of values you are to determine the length of the cycle of pseudo-random numbers that will be generated. But be careful -- the cycle might not begin with the seed!
7 5 12 4 5173 3849 3279 1511 9111 5309 6000 1234 1079 2136 9999 1237 0 0 0 0
Case 1: 6 Case 2: 546 Case 3: 500 Case 4: 220