HW1:
SIS & ABC Report

Introduction of SIS | ABC

Topic: Logic Optimization

Goal

Find an equivalent representation of a logic circuit that minimizes the area of the circuit under some delay constraints.

Functional equivalent

fi=a-d+c-d - » fh=(@+c)-d

a_A} Better Area ‘Cl
i | j}w}

Operator’: 2 And + 1 OR Operator’: 1 And + 1 OR

1. Inverters are 1gnored 1n logic area calculations for simplicity and negligible impact.

Historical Perspective

Problem Size

Boolean Network (DAG)

A SIS, ABC Mockturtle
100000
MIG
SIS, VIS, MVSIS Boolean
Network AAG
100 XMG
AIG
Espresso XAIG ESOP
MIS, SIS CNFE
>0 BDD
16 SOP
TruthTable
1950 ~ 1970 1980s 1990s 2000s 2010s

Time

Te rm i na I Og y Primary Outputs

Logic function (F = ab +a’'d): | | I | |

4
4
4

) thrlables (a,b,d) N (Transitiveﬁg-out Cone)

e Literals (a,a’, b, d)

e Minterms (abd, abd', a’bd, a’b’'d)

e Cube: set of Minterms (ab, a’d) R ./ Fanouts
Logic network:

 Primary inputs/outputs (PI/PO) "« _Fanins
e Logic nodes Q ‘

e Fanins/Fanouts

e Transitive fanin/fanout cone (TFI/TFO) TET

e Cut and Window (define in ABC section) , (Transitive Fan-in Cone)

~
S
S
N
S
S
S
S
S
S
7’ N\

Primary Inputs

SIS: A System for Sequential Circuit Synthesis

Representation of SIS

/

e Network manipulation (algebraic):
 Elimination

e Factoring/Decomposition

Node minimization:

* Espresso
 Don’t cares computed using BDD

g e Resubstitution

ab Technology mapping

e Tree based

»© @

(a) Boolean network 1in SIS

How to optimize circuit

sis> read_Dblif mcnc/mlex/dalu.blif

sis> print_stats

dalu pi=7/5 po=16 nodes=1131 latches= 0
lits(sop)=3588

sis> decomp

sis> print_stats

dalu pi=7/5 po=16 nodes=1428 latches=0
lits(sop)=3364

sis> full_simplify

sis> print_stats

dalu pi=75 po=16 nodes=1428 latches=0
lits(sop)=2828

sis> collapse

sis> print_stats

dalu pi=75 po=16 nodes= 16 latches=0
lits(sop)=24902

sis> decomp -g

sis> print_stats

dalu pDi=75 po=16 nodes=489 latches= 0
lits(sop)=2311

script.rugged

sweep; eliminate -1
simplify -m nocomp
eliminate -1

sweep;

eliminate 5

simplify -m nocomp
resub -a

fx

resub -a; sweep
eliminate -1; sweep
full_simplify -m nocomp

How to optimize circuit using script.ruggead

sis> read_blif mcnc/mlex/dalu.blif

sis> print_stats

dalu pi=75 po=16 nodes=1131 latches=0
lits(sop)=3588

Sis> source script.rugged

sis> print_stats

dalu pi=75 po=16 nodes=225 latches= 0
lits(sop)=1606

ABC: A System for Sequential Synthesis and Verification

Representation of ABC

AlG manipulation (graph/boolean):
* Rewriting/Retactoring

e Balancing

Node minimization:

* Boolean decomposition
 Don’t cares computed using simulation & SAT
e Resubstitution with don’t cares

Technology mapping

e (Cut based with choice nodes

(a) AIG in ABC, AIG is a Boolean network of 2-input
AND nodes and inverters (dotted lines)

Basic Operation unit: Window

Definition of window for node x:

e A window of node x 1s the node’s context, in which can
operation 1s performed.

e It includes:
e klevels of the TFI
e m levels of the TFO

* All convergent path between Window Inputs &
Window Outputs

 Used in command mfs, &mfs (LUT Resynthesis)

Primary Outputs

Window Outputs

""""""""
ANz

Re-covergent
Path \\

Primary Inputs

Basic Operation unit: Cut

Definition of cut for node x: Computation is done bottom-up

e A cut of node x 1n an AIG 1s a set of nodes that blocks all {{a}}

paths from PI of x to x.
(a)_tiphtaby

tb}) . {6 pabpbeh{abg) {abc})

®

There are many cuts for the same node, AlG manipulation with cuts is equivalent to working
each cut is a different SIS node. on many boolean networks at the same time.

Algorithm: AlG Rewriting

Core concept of rewrite

Identify optimal circuit region, replace it with optimal equivalent logic.

Definition of “circuit region”
It is the k-feasible cut of an AIG node.

o A k-feasible cut represents a k-input boolean expression to be replaced.
e In ABC, by default, k=4.

Algorithm

For each node x in AIG (topological order):

1. Cut Enumeration: Generate < 8 (by default) cut of node x.

2. Evaluation: For each cut ¢ of node x, identify optimal circuit region
and corresponding optimal equivalent logic.

3. Replacement

Input

l

v

Cut Enumeration

Repeating !
for |
Each Node Evaluation
Replacement
Output

(a) AIG Rewriting

AlIG Rewriting: Evaluation

Evaluation: For node x, identity optimal cut ¢,

¢ and corresponding

optimal equivalent logic.

1. Using the pre-computed library to find equivalent logic for each cut ¢

2. For each cut ¢, replace the logic with the equivalent that provides the
highest gain.

3. Compare all cuts and their best equivalent logic, and select the cut
with the highest gain.

Input

l

One Node x
For Each Cut:
Evaluate:
Delete Subgraph 1 | | Subgraph2 | =~ | | Restore
Logic Cone of the Cut of the Cut Logic Cone

v

Cut Enumeration

R AT
for |
Each Node Evaluation
Replacement
Output

(a) AIG Rewriting

For node x:

Equivalent Logic for c;

<

Boolean Matching

Equivalent Logic for c;

/', Logicn

Logic 1
Logic 2

Logic 1

Logic 2

Logic n

Fvaluate

Equivalent Logic for ¢,
Logic 1
Logic 2

Logic n

N

Equivalent Logic for ¢,

Logic 1
Logic 2

Logic n

AlIG Rewriting: Replacement

o o

@ B
g =)'o’@ f

Cut Enumeration

(a) Two Logically Equivalent Graphs

Repeating
for |
Each Node Evaluation

Replacement

Output

(b) Replacement using Graphs in (a) (a) Single threaded AIG Rewriting

How to optimize circuit

abc 01> read mcnc/mlex/dalu.blif

abc 03> strash;print_stats

dalu /o= 75/ 16 lat= 0 and= 1371 lev=35
abc 05> rewrite

abc 06> print_stats

dalu /o= 75/ 16 lat= 0 and= 1202 lev =33

How to optimize circuit using ABC9

abc 01> read mcnc/mlex/dalu.blif

abc 02> strash;print_stats

dalu 1/lo= 75/ 16 lat= 0 and= 1371 lev =235

abc 03> &get (# transform AlG to GIA data structure)

abc 03> &ps

dalu :i/lo= 75/ 16 and= 1371 lev= 35 (26.88) mem = 0.02 MB
abc 03> &syn4

abc 03> &ps

dalu :ifo= 75/ 16 and= 997 lev= 35 (23.62) mem =0.01 MB
abc 03> &put (# transform GlA to AlG data structure)

abc 04> print_stats

dalu 1/o= 75/ 16 lat= 0 and= 997 lev=35

GIA: New AIG manager in ABC9 (better implementation of AlG, 2012)
GIA: Gia_Obj_t

e (Cache-Friendly & Memory Efficient: Bit-Packing
e Support native XOR & MUX nodes: &st -m -L [1dentifies XOR structures, enabling native XAIG representation.
* However, ABC lacks native XAIG based synthesis, so standard algorithms such as rewrite break XAIG equivalence.

Example: node2 = node0 and node

GIA Manager | 3 word
(Array) o .
Information of fanin0 |fTerm| Information of faninl | fPhase application-specific value

0 | node0 (31 bit) (1 bat) (31 bit) (1 bat) (32 bit)

1 [nodef iDiff1 fCompll | fMarkl
(29 bit) (1 bit) (1 bat)

2 |node2 , _

Information of fanin:

e iDiffl (Index Difference): Index(node2) - Index(nodel) = 1

e fCompll (isComplement?): True

e fMarkl: User-defined bit, can be used as a flag (e.g., 1sVisit?)
fTerm: is current node 1s PI/PO node?

fPhase: Output value of current node under PI = 0000... (can be used 1n fast stmulation)
XOR support: If 1D1ff0 > 1D1ff1, node 1s XOR gate.

orchestrate: Greedy Node-wise Optimization Operator (node level operator, AlG, 2023)

rW/rf/rs

Orchestrator (Greedy)

Which is best
for node n?

(JeplO |edibojodo|) asionel|

(a) Traditional AIG Rewriting (b) Orchestration: Greedily optimizes each AIG node by selecting
the rw/rs/rf with the highest local gain in a single traversal.

How to optimize circuit using orchestration

abc 01> read ../ mcnc/mlex/dalu.blif
abc 02> strash;print_stats
dalu 1/lo= 75/ 16 lat= 0 and= 1371 lev=35

abc 03> orchestrate

abc 03> ps
dalu /o= 75/ 16 lat= 0 and= 1100 lev = 32

(4epIO |edibojodo|) asionel |

&deepsyn: Automated High-effort Optimization Operator (command level operator, GIA, 2019)

abc 01> read ../mcnc/mlex/dalu.blif

abc 02> &get;&ps

dalu :i/o= 75/ 16 and= 1371 lev= 35 (26.88) mem = 0.02 MB
abc 03> &deepsyn -I 3 -J 200

Completed 200 iterations without improvement in 81.43 seconds.
Completed 200 iterations without improvement in 75.21 seconds.
Completed 200 iterations without improvement in 48.19 seconds.

abc 4858> &ps;&put

dalu :i/o= 75/ 16 and= 527 lev= 14 (12.12) mem =0.01 MB

Parameter

Outer-loop: Start from initial AIG each iteration
Termination Condition:
-l : the number of iterations [default = 1]

Inner-loop: Start from current best and perform greedy randomized optimization
Termination Condition:
-J : the number of steps without improvements [default = 1000000000]
-T :the timeout of in seconds (0 = no timeout) [default = 0]
-A . the number of nodes to stop (0 = no limit) [default = O]

Why &deepsyn so powerful: Area-increasing Transtormation

Repeat:
1. Global transformations
2. Local transformations

Operators selected by &deepsyn

Global transformations (always selected):
&dch: structural choices
&if: priority-cut-based k-LUT mapping
&mfs: Area-Oriented k-LUT Resynthesis (using windowing & don’t care)

Local transformations (selected probabilistically):
&fx: fast extraction (Algebraic Division, kernal/cokernal)

&compress2rs: AlG rewriting for area
&dc2: AlG rewriting for delay

General AIG Command Framework

Repeat: choice -> LUT mapping -> LUT Resynthesis -> transfer to AlG -> AlG optimization

&dch: structural choices (hode level operator, GIA, 2011)

The &dch command searches for and stores functionally equivalent nodes (choices) in the AIG, allowing later
optimization steps to exploit these structural alternatives.

abc 01> read dalu.blif

abc 02> &get;&ps

dalu :i/o= 75/ 16 and= 1371 lev= 35 (26.88) mem = 0.02 MB
abc 02> &dch

abc 02> &ps

dalu :i/o= 75/ 16 and= 2116 lev= 26 (17.75) mem =0.03 MB ch = 362
cst = O cls= 329 lit= 362 unused= 1500 proof= O

abc 02> &syn4

abc 02> &ps

dalu :i/o= 75/ 16 and= 924 lev= 25(18.25) mem =0.01 MB

Reterence (use &syn4 directly)

dalu :i/o= 75/ 16 and= 997 lev= 35 (23.62) mem =0.01 MB

What is structural choices?

Equivalent Class of node x

Choice logic for
follow-up optimization

Boolean Choose Logic TFI(x)

\ Matching as Representative

1. Fast Stmulation (Coarse grained)
2. SAT Solver (fine grained)

Using Resynthesis to
generate more potential
equivalent logic

- -
-
v

-
-——

Reconstructed
AIG after

Original AIG

Bitwise Simulation

o | O | O

Core concept of bitwise simulation

~ W DN

\ 2l
1 41 0
110 111 110 111

1. Multiple simulation patterns are packed into 32 or 64 bit strings.

2. Perform bitwise simulation at each node in topological order

21 1 21 0 21 0 21 0
3| 1 3| 0 3| 1 3| 1
41 1 41 1 41 0 41 1

SAT Solver will introduced in next homework

Thanks

