
SIS & ABC Report

Speaker: 唐梧遷
Keyword: AIG, SIS, SAT Solver
Mar.31, 2025

towne.cpp@gmail.com

HW1:

Introduction of SIS | ABC

Topic: Logic Optimization

Goal
Find an equivalent representation of a logic circuit that minimizes the area of the circuit under some delay constraints.

f2 = (a + c) ⋅ d′￼f1 = a ⋅ d′￼+ c ⋅ d′￼

Functional equivalent

Better Area

Operator1: 2 And + 1 OR Operator1: 1 And + 1 OR

1. Inverters are ignored in logic area calculations for simplicity and negligible impact.

Historical Perspective

Problem Size

Time
TruthTable

SOP

BDD

Boolean
Network

AIG
XAIG
CNF

16

50

100

100000

Espresso
MIS, SIS

SIS, VIS, MVSIS

SIS, ABC

MIG
XAG
XMG
ESOP

…

Mockturtle

1950～1970 1980s 1990s 2000s

Boolean Network (DAG)

2010s

Terminalogy

Logic function (F = ab +a’d):
• Variables (, ,)
• Literals (, , ,)
• Minterms (, , ,)
• Cube: set of Minterms (,)

a b d
a a′￼ b d

abd abd′￼ a′￼bd a′￼b′￼d
ab a′￼d

Logic network:
• Primary inputs/outputs (PI/PO)
• Logic nodes
• Fanins/Fanouts
• Transitive fanin/fanout cone (TFI/TFO)
• Cut and Window (define in ABC section)

SIS: A System for Sequential Circuit Synthesis

Representation of SIS

(a) Boolean network in SIS

Network manipulation (algebraic):
• Elimination
• Factoring/Decomposition

Node minimization:
• Espresso
• Don’t cares computed using BDD
• Resubstitution

Technology mapping
• Tree based

How to optimize circuit

sis> read_blif mcnc/mlex/dalu.blif
sis> print_stats
dalu pi=75 po=16 nodes=1131 latches= 0
lits(sop)=3588
sis> decomp
sis> print_stats
dalu pi=75 po=16 nodes=1428 latches= 0
lits(sop)=3364
sis> full_simplify
sis> print_stats
dalu pi=75 po=16 nodes=1428 latches= 0
lits(sop)=2828
sis> collapse
sis> print_stats
dalu pi=75 po=16 nodes= 16 latches= 0
lits(sop)=24902
sis> decomp -g
sis> print_stats
dalu pi=75 po=16 nodes=489 latches= 0
lits(sop)=2311

script.rugged
sweep; eliminate -1
simplify -m nocomp
eliminate -1
sweep;
eliminate 5
simplify -m nocomp
resub -a
fx
resub -a; sweep
eliminate -1; sweep
full_simplify -m nocomp

How to optimize circuit using script.rugged

sis> read_blif mcnc/mlex/dalu.blif
sis> print_stats
dalu pi=75 po=16 nodes=1131 latches= 0
lits(sop)=3588
sis> source script.rugged
sis> print_stats
dalu pi=75 po=16 nodes=225 latches= 0
lits(sop)=1606

ABC: A System for Sequential Synthesis and Verification

Representation of ABC

(a) AIG in ABC, AIG is a Boolean network of 2-input
AND nodes and inverters (dotted lines)

AIG manipulation (graph/boolean):
• Rewriting/Refactoring
• Balancing

Node minimization:
• Boolean decomposition
• Don’t cares computed using simulation & SAT
• Resubstitution with don’t cares

Technology mapping
• Cut based with choice nodes

Definition of window for node :

• A window of node x is the node’s context, in which can
operation is performed.

• It includes:

• k levels of the TFI

• m levels of the TFO

• All convergent path between Window Inputs &
Window Outputs

• Used in command mfs, &mfs (LUT Resynthesis)

x

Basic Operation unit: Window

Definition of cut for node :

• A cut of node x in an AIG is a set of nodes that blocks all
paths from PI of to .

x

x x

Computation is done bottom-up

There are many cuts for the same node,
each cut is a different SIS node.

Basic Operation unit: Cut

AIG manipulation with cuts is equivalent to working
on many boolean networks at the same time.

Algorithm: AIG Rewriting

Core concept of rewrite
Identify optimal circuit region, replace it with optimal equivalent logic.

Definition of “circuit region”
It is the -feasible cut of an AIG node.
• A -feasible cut represents a -input boolean expression to be replaced.
• In ABC, by default, =4.

k
k k

k

Algorithm
For each node in AIG (topological order):
1. Cut Enumeration: Generate (by default) cut of node .
2. Evaluation: For each cut of node , identify optimal circuit region

and corresponding optimal equivalent logic.
3. Replacement

x
≤ 8 x

c x

(a) AIG Rewriting

AIG Rewriting: Evaluation

Evaluation: For node , identify optimal cut and corresponding
optimal equivalent logic.

1. Using the pre-computed library to find equivalent logic for each cut
2. For each cut , replace the logic with the equivalent that provides the

highest gain.
3. Compare all cuts and their best equivalent logic, and select the cut

with the highest gain.

x copt

c
c

(a) AIG Rewriting

For node : x

Boolean Matching

Evaluate

(b) Replacement using Graphs in (𝑎)

AIG Rewriting: Replacement

(a) Single threaded AIG Rewriting

(a) Two Logically Equivalent Graphs

How to optimize circuit

abc 01> read mcnc/mlex/dalu.blif
abc 03> strash;print_stats
dalu : i/o = 75/ 16 lat = 0 and = 1371 lev = 35
abc 05> rewrite
abc 06> print_stats
dalu : i/o = 75/ 16 lat = 0 and = 1202 lev = 33

How to optimize circuit using ABC9

abc 01> read mcnc/mlex/dalu.blif
abc 02> strash;print_stats
dalu : i/o = 75/ 16 lat = 0 and = 1371 lev = 35
abc 03> &get (# transform AIG to GIA data structure)
abc 03> &ps
dalu : i/o = 75/ 16 and = 1371 lev = 35 (26.88) mem = 0.02 MB
abc 03> &syn4
abc 03> &ps
dalu : i/o = 75/ 16 and = 997 lev = 35 (23.62) mem = 0.01 MB
abc 03> &put (# transform GIA to AIG data structure)
abc 04> print_stats
dalu : i/o = 75/ 16 lat = 0 and = 997 lev = 35

GIA: New AIG manager in ABC9 (better implementation of AIG, 2012)
GIA: Gia_Obj_t
• Cache-Friendly & Memory Efficient: Bit-Packing
• Support native XOR & MUX nodes: &st -m -L 1 identifies XOR structures, enabling native XAIG representation.
• However, ABC lacks native XAIG based synthesis, so standard algorithms such as rewrite break XAIG equivalence.

Information of fanin0
(31 bit)

fTerm
(1 bit)

Information of fanin1
(31 bit)

fPhase
(1 bit)

application-specific value
(32 bit)

iDiff1
(29 bit)

fCompl1
(1 bit)

fMark1
(1 bit)

Information of fanin:
• iDiff1 (Index Difference): Index(node2) - Index(node1) = 1
• fCompl1 (isComplement?): True
• fMark1: User-defined bit, can be used as a flag (e.g., isVisit?)

fTerm: is current node is PI/PO node?
fPhase: Output value of current node under PI = 0000… (can be used in fast simulation)
XOR support: If iDiff0 > iDiff1, node is XOR gate.

0 node0

1 node1

2 node2

GIA Manager
(Array)

Example: node2 = node0 and node1

3 word

orchestrate: Greedy Node-wise Optimization Operator (node level operator, AIG, 2023)

Traverse (Topological O
rder)

How to optimize circuit using orchestration

Traverse (Topological O
rder)

abc 01> read ../mcnc/mlex/dalu.blif
abc 02> strash;print_stats
dalu : i/o = 75/ 16 lat = 0 and = 1371 lev = 35
abc 03> orchestrate
abc 03> ps
dalu : i/o = 75/ 16 lat = 0 and = 1100 lev = 32

(a) Traditional AIG Rewriting (b) Orchestration: Greedily optimizes each AIG node by selecting
the rw/rs/rf with the highest local gain in a single traversal.

&deepsyn: Automated High-effort Optimization Operator (command level operator, GIA, 2019)

abc 01> read ../mcnc/mlex/dalu.blif
abc 02> &get;&ps
dalu : i/o = 75/ 16 and = 1371 lev = 35 (26.88) mem = 0.02 MB
abc 03> &deepsyn -I 3 -J 200
Completed 200 iterations without improvement in 81.43 seconds.
Completed 200 iterations without improvement in 75.21 seconds.
Completed 200 iterations without improvement in 48.19 seconds.
abc 4858> &ps;&put
dalu : i/o = 75/ 16 and = 527 lev = 14 (12.12) mem = 0.01 MB

Parameter

Outer-loop: Start from initial AIG each iteration
Termination Condition:

-I : the number of iterations [default = 1]

Inner-loop: Start from current best and perform greedy randomized optimization
Termination Condition:

-J : the number of steps without improvements [default = 1000000000]
-T : the timeout of in seconds (0 = no timeout) [default = 0]
-A : the number of nodes to stop (0 = no limit) [default = 0]

Operators selected by &deepsyn

Global transformations (always selected):
&dch: structural choices
&if: priority-cut-based k-LUT mapping
&mfs: Area-Oriented k-LUT Resynthesis (using windowing & don’t care)

Local transformations (selected probabilistically):
&fx: fast extraction (Algebraic Division, kernal/cokernal)
&compress2rs: AIG rewriting for area
&dc2: AIG rewriting for delay

Why &deepsyn so powerful: Area-increasing Transformation

Repeat:
1. Global transformations
2. Local transformations

Repeat: choice -> LUT mapping -> LUT Resynthesis -> transfer to AIG -> AIG optimization

General AIG Command Framework

&dch: structural choices (node level operator, GIA, 2011)

abc 01> read dalu.blif
abc 02> &get;&ps
dalu : i/o = 75/ 16 and = 1371 lev = 35 (26.88) mem = 0.02 MB
abc 02> &dch
abc 02> &ps
dalu : i/o = 75/ 16 and = 2116 lev = 26 (17.75) mem = 0.03 MB ch = 362
cst = 0 cls = 329 lit = 362 unused = 1500 proof = 0
abc 02> &syn4
abc 02> &ps
dalu : i/o = 75/ 16 and = 924 lev = 25 (18.25) mem = 0.01 MB

Reference (use &syn4 directly)

 dalu : i/o = 75/ 16 and = 997 lev = 35 (23.62) mem = 0.01 MB

The &dch command searches for and stores functionally equivalent nodes (choices) in the AIG, allowing later
optimization steps to exploit these structural alternatives.

What is structural choices?

Bitwise Simulation

Core concept of bitwise simulation
1. Multiple simulation patterns are packed into 32 or 64 bit strings.
2. Perform bitwise simulation at each node in topological order

SAT Solver will introduced in next homework

Thanks

