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Abstract

The multicast operation is a very commonly used 

operation in parallel applications.  With the hardware 

supported multicast of the InfiniBand Architecture 

(IBA), we propose a cyclic multicast scheme for fat-

tree-based (m-port n-tree) InfiniBand networks.  The 

basic concept of the proposed cyclic multicast scheme 

is to find the union sets of the output ports of switches 

in the paths between the source processing node and 

each destination processing node in a multicast group.  

Based on the union sets and the path selection scheme, 

the forwarding table for a given multicast group can 

be constructed.  We implement the proposed multicast 

scheme along with the OpenSM multicast scheme and 

the unicast scheme on an m-port n-tree InfiniBand 

network simulator.  The simulation results show that 

the proposed multicast scheme outperforms the unicast 

scheme for all simulated cases.  For many-to-many 

and all-to-many cases, the cyclic multicast scheme 

outperforms the OpenSM multicast scheme.  For 

many-to-all case, the performance of the cyclic 

multicast scheme is a little better than that of the 

OpenSM multicast scheme. 

1. Introduction 

Interconnection networks in cluster systems have 

great impact on the performance of communication-

bounded applications.  The InfiniBand Architecture 

(IBA) [2] is a new industry-standard architecture for 

server I/O and inter-server communication.  The IBA 

enables high-speed, low-latency communication 

between connected devices and it is suitable for the 

interconnection network of a cluster system. 

The multicast operation [1,7] is a very commonly 

used operation in cluster systems.  Since the 

InfiniBand Architecture supports hardware multicast, 

one can take advantage of this feature to speedup the 

multicast operation.  OpenSM [6] is an implementation 

of subnet manager.  In OpenSM, it implements a 

hardware supported multicast scheme by using a 

spanning tree approach to construct the multicast paths 

for a given multicast group.  However, its performance 

may not be satisfied since it does not take the 

characteristics of a network topology into account. 

In this paper, we focus on the fat-tree topology [3-

4,8] used in most scalable cluster systems nowadays.  

We propose a cyclic multicast scheme for the m-port n-

tree (a fat-tree) InfiniBand networks [5] based on the 

hardware supported multicast feature of the IBA and 

the characteristics of m-port n-tree fat-trees.  To 

evaluate the proposed method, we implement the 

cyclic multicast scheme, the OpenSM multicast 

scheme, and a unicast scheme on an m-port n-tree

InfiniBand network simulator that is written in Java.  

The simulation results show that the proposed cyclic 

multicast scheme outperforms the unicast schemes for 

all test cases.  The lager the message size, the number 

of multicast source nodes, and the size of the multicast 

group, the better speedup can be expected from the 

proposed multicast schemes. 

The rest of this paper is organized as follows.  

Section 2 will introduce the fat-tree-based InfiniBand 

networks.  The proposed multicast schemes will be 

described in Section 3.  Section 4 will give the 

simulation results for the proposed multicast schemes.  

The conclusions will be given in Section 5. 

2. Preliminaries 

2.1.    InfiniBand Architecture (IBA) 

The InfiniBand network is a packet-switching 

network.  Since the mapping between destination local 

identifier (DLID) and output port is one-to-one, in 

order to support multiple paths, the IBA defines an 

LID Mask Control (LMC) value that can be assigned 

to each endport.  The LMC is a 3-bit field that 

represents 2LMC paths (maximum of 128 paths). 

The IBA also supports hardware multicast.  In the 

IBA, each multicast group is assigned a multicast LID 

and a global identifier (GID) by the subnet manager.  

The subnet manager will setup the forwarding table of 
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each switch for each multicast group according its LID 

and GID.  To perform a multicast operation in an 

InfiniBand network, the source processing node uses 

the multicast LID and the GID of a multicast group to 

send packets.  When a switch receives a multicast 

packet, it replicates the packet and forwards the packet 

to the corresponding output ports according to its 

forwarding table. 

2.2. The m-Port n-Tree InfiniBand Networks 

In [5], we have proposed an m-port n-tree

InfiniBand network IBFT(m, n).  It has the following 

characteristics:

1. The height of IBFT(m, n) is n + 1. 

2. IBFT(m, n) consists of 2 ( 2)nm³  processing 

nodes and ( ) 1
(2 1) / 2

n
n m

-- ³  InfiniBand 

switches.

3. Each switch has m ports. 

An example is shown in Figure 1. 
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Figure 1. An example of a 4-port 3-tree 
InfiniBand network. 

3. The Proposed Multicast Scheme 

The proposed multicast scheme consists of three 

sub-schemes, the processing node addressing scheme, 

the path selection scheme, and the forwarding table 

assignment scheme.  We use the four definitions in [5], 

the greatest common prefix, the least common 

ancestors, the greatest common prefix group, and the 

rank of processing node. 

3.1. The Processing Node Addressing Scheme 

Given an m-port n-tree InfiniBand network IBFT(m,

n), in the multicast scheme, every processing node in 

IBFT(m, n) is assigned a set of LIDs.  The set of LIDs 

assigned to each processing node is formed by the 

combination of one base LID and a LID Mask Control 

value LMC, where LMC = 1

2log ( / 2)nm - .  For 

processing node 0 1 1( )nP p p p p -= L  in IBFT(m, n),

the set of LIDs assigned to P(p), denoted by 

LIDset(P(p)), is {BaseLID(P(p)), BaseLID(P(p)) + 

1, …, BaseLID(P(p)) + (2LMC 1)}, where 

BaseLID(P(p)) = ( )
1

( 1)

0

2 / 2 1
n

n iLMC

i

i

p m
-

- +

=

å õ³ ³ +æ ö
ç ÷
ä  is 

the base LID of P(p).  There are 2LMC LIDs in 

LIDset(P(p)), which indicates that there are maximal 

2LMC paths between any pair of processing nodes. 

3.2. The Path Selection Scheme 

We propose a cyclic path selection scheme 

according to the cyclic grouping policy to take the 

advantage of multiple LIDs of a processing node such 

that the duplication of a packet will not occur in the 

ascending phase.  The grouping policy is to decide 

what processing nodes are in the same group for a 

given destination processing node P(p).  For the 

processing nodes in the same group, they will send 

messages to the destination processing node P(p) by 

choosing the same LID of P(p).

Given an m-port n-tree InfiniBand network IBFT(m,

n), for a destination processing node 

0 1 1( )nP p p p p -= L , source processing nodes P(s1)

and P(s2) are in the same cyclic group CG(P(p), l, y) if 

the following two rules are satisfied. 

Rule 1: The level l of the least common ancestors 

lca(P(p), P(s1)) is the same as that of lca(P(p), P(s2)).

Rule 2: P(s1) and P(s2) have the same common 

suffix y and |y| = n - l - 1. 

The cyclic path selection scheme is performed as 

follows.  For a destination processing node 

0 1 1( )nP p p p p -= L  and a source processing node 

0 1 1( )nP p p p p -¡ ¡ ¡ ¡= L  in CG(P(p), l, y), when P(p')

wants to send messages to P(p), it will select 

BaseLID(P(p)) + rank(gcpg( 0 1 lp p p¡ ¡ ¡L , l + 1), P(p'))

as the LID of P(p).

Figure 2 shows an example of the cyclic path 

selection scheme for a 4-port 3-tree InfiniBand 

network IBFT(4, 3).  Given an destination processing 

node P(200), we can divide the source processing 

nodes into cyclic groups CG(P(200), 0, 00) = {P(000),

P(100), P(300)}, CG(P(200), 0, 01) = {P(001), P(101),

P(301)}, CG(P(200), 0, 10) = {P(010), P(110),

P(310)}, CG(P(200), 0, 11) = {P(011), P(111),

P(311)}, CG(P(200), 1, 0) = {P(210)}, CG(P(200), 1, 

1) = {P(211)}, and CG(P(200), 2, e) = {P(201)} based 

on the cyclic grouping policy, where e is a null string.  

Assume that there are four source processing nodes 

P(000), P(001), P(010), and P(011) want to send 

messages to the destination processing node P(200).

Since the four source processing nodes are in different 

groups of CG(P(200), 0), they will choose the different 

LIDs 33, 34, 35, and 36 (33 + 0, 33 + 1, 33 + 2, and 33 
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+ 3) of the destination processing node P(200) and 

send messages through paths Q, R, S, and T,

respectively.

According to the path selection scheme, the 

duplication of packets can be avoided in the ascending 

phase when a processing node sends packets to 

different destination processing nodes.  An example is 

shown in Figure 3.  In Figure 3, the source processing 

node P(000) sends messages to P(200), P(201), P(210),

and P(211) through routes Q, R, S, and T, respectively.  

From Figure 3, we can see that all routes take the same 

path in the ascending phase. 
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Figure 2. The cyclic path selection scheme. 
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Figure 3. An example of one-to-many multicast. 

3.3. The Forwarding Table Assignment Scheme 

The forwarding table assignment consists of two 

phases: the one-to-one forwarding table assignment 

and the multicast forwarding table assignment based 

on union operation. 

3.3.1. The One-to-one Forwarding Table Assignment 

The one-to-one forwarding table assignment is 

described in section 4.3 of [5]. 

3.3.2. The Multicast Forwarding Table Assignment 

Based on Union Operations 

After the one-to-one forwarding table assignment is 

performed, we can setup the multicast forwarding table 

for a given source processing node and a multicast 

group based on union operations.  Let 

0 1 1( )nP p p p p -= L  be a source processing node and 

lid = 1 2{ , ,..., | 2 ( 2) }n

tlid lid lid t m¢ ³  be the DLID of 

a multicast group, where 

1 2{ , ,..., | 2 ( 2) }n

tlid lid lid t m¢ ³  is the set of LIDs of 

destination processing nodes in a multicast group.  For 

each switch SW<w, l>, based on Equations (1) and (2), 

we can determine the output port of a packet whose 

DLID is lid1, lid2, …, and lidt as 
1

, kSW w l< > ,

2
, kSW w l< > , … , and ,

tkSW w l< > , respectively.  It 

means that when a packet whose DLID is lid1, lid2, …, 

and lidt arrives in switch SW<w, l>, it will be 

forwarded to port 
1

, kSW w l< > ,
2

, kSW w l< > , … , 

and ,
tkSW w l< > , respectively.  Since an InfiniBand 

switch can duplicate a packet to different output ports 

and the path selection schemes given in Section 3.2 

will prevent the packet from being duplicated in the 

ascending phase, the output ports of a multicast packet 

1 2{ , ,..., | 2 ( 2) }n

tlid lid lid t m¢ ³ can be set as the union 

of
1

, kSW w l< > ,
2

, kSW w l< > , … , and 

,
tkSW w l< >  in switch SW<w, l>.
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Figure 4. An example of multicast forwarding 
table setup. 

An example is shown in Figure 4.  In Figure 4, 

assume that processing node P(000) wants to send 

multicast packets to processing nodes P(200), P(201),

P(210) and P(211).  The lid set of the multicast group 

is {33, 37, 41, 45}.  From Figure 5, we can determine 

that its output ports in switch SW<00, 2> = {3}, 

SW<00, 1> = {3}, SW<00, 0> = {3}, SW<20, 1> = {1, 

2}, SW<20, 2> = {1, 2}, and SW<21, 2> = {1, 2}, 

respectively.  The multicast operation can be 

performed correctly. 

4. Performance Evaluation 

To evaluate the performance of the proposed 

multicast scheme, we design an m-port n-tree

InfiniBand network simulator by using Java.  Three 

schemes, the proposed cyclic multicast scheme, the 

OpenSM multicast scheme, and the unicast scheme 

were simulated for performance evaluation. 
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An 8-port 3-tree InfiniBand network is simulated.  

The network contains 80 switches and 128 processing 

nodes.  Here we only show the simulation results of 

40%-to-40% multicast in Figure 5 to Figure 7.  Since 

there are more than one source processing nodes send 

messages to the destination processing nodes, the 

traffic congestion did occur.  From the simulation 

results, we can see that the multicast schemes 

outperform the unicast scheme.  Moreover, our cyclic 

multicast scheme outperforms the OpenSM multicast 

scheme when the destination group size is small (10% 

and 40%).  This is because the OpenSM multicast 

scheme only builds one multicast tree, while our 

scheme builds more multicast trees to take the 

advantages of available bandwidth of fat-tree topology.  

When the destination group size is large (100%), the 

performance of our scheme is a little better than that of 

the OpenSM multicast scheme since the serious traffic 

congestion in the descending phase. 

5. Conclusions 

In this paper, we propose a hardware supported 

multicast scheme for the fat-tree-based InfiniBand 

networks.  The simulation results show that the 

proposed cyclic multicast scheme can speed up the 

execution of multicast operations.  From the 

simulations results, we have the following remarks: 

Remark 1: We observe that the proposed multicast 

scheme outperforms the unicast scheme for all 

simulated cases.  This result indicates that the 

hardware supported multicast of the IBA can help to 

speedup the execution of multicast operations. 

Remark 2: Comparing to the OpenSM multicast 

scheme, for one-to-many case, the performance of the 

cyclic multicast scheme is the same as that of the 

OpenSM multicast method.  For many-to-many and 

all-to-many cases, the cyclic multicast scheme 

outperforms the OpenSM multicast method.  For 

many-to-all case, the performance of the cyclic 

multicast scheme is a little better than that of the 

OpenSM multicast method. 

�

���

���

���

���

����

�� �� ��� ��� ��� �	 �	 �	

����������	
����


�
��
�
��
�
�	

������� ����������������

����������������

�

�

��

��

��

��

��

��

�� ��� ��� �	� ����


���
����
�������

�
��
��
��

��

������� ������
���������

������
���������

(a) Small size              (b) Large size  
Figure 5. 40%-to-10% multicast. 

�

���

���

���

���

����

����

����

����

�� �� ��� ��� ��� �	 �	 �	

����������	
����


�
��
�
��
�
�	

������� ����������������

����������������

�

��

��

��

��

��

��

��

	
 ��
 ��
 ��
 ��	


��
����������
���

�
��
��
��

��

������
 ����������
����


 ���������
����


(a) Small size              (b) Large size  
Figure 6. 40%-to-40% multicast. 
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Figure 7: 40%-to-all multicast. 
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