
Multicast in Fat-Tree-Based InfiniBand Networks

Jiazheng Zhou, Xuan-Yi Lin, Chun-Hsien Wu, and Yeh-Ching Chung

Department of Computer Science

National Tsing-Hua University, Hsinchu, Taiwan 30013, ROC

{jzzhou, xylin, chwu, ychung}@cs.nthu.edu.tw

Abstract

The multicast operation is a very commonly used

operation in parallel applications. With the hardware

supported multicast of the InfiniBand Architecture

(IBA), we propose a cyclic multicast scheme for fat-

tree-based (m-port n-tree) InfiniBand networks. The

basic concept of the proposed cyclic multicast scheme

is to find the union sets of the output ports of switches

in the paths between the source processing node and

each destination processing node in a multicast group.

Based on the union sets and the path selection scheme,

the forwarding table for a given multicast group can

be constructed. We implement the proposed multicast

scheme along with the OpenSM multicast scheme and

the unicast scheme on an m-port n-tree InfiniBand

network simulator. The simulation results show that

the proposed multicast scheme outperforms the unicast

scheme for all simulated cases. For many-to-many

and all-to-many cases, the cyclic multicast scheme

outperforms the OpenSM multicast scheme. For

many-to-all case, the performance of the cyclic

multicast scheme is a little better than that of the

OpenSM multicast scheme.

1. Introduction

Interconnection networks in cluster systems have

great impact on the performance of communication-

bounded applications. The InfiniBand Architecture

(IBA) [2] is a new industry-standard architecture for

server I/O and inter-server communication. The IBA

enables high-speed, low-latency communication

between connected devices and it is suitable for the

interconnection network of a cluster system.

The multicast operation [1,7] is a very commonly

used operation in cluster systems. Since the

InfiniBand Architecture supports hardware multicast,

one can take advantage of this feature to speedup the

multicast operation. OpenSM [6] is an implementation

of subnet manager. In OpenSM, it implements a

hardware supported multicast scheme by using a

spanning tree approach to construct the multicast paths

for a given multicast group. However, its performance

may not be satisfied since it does not take the

characteristics of a network topology into account.

In this paper, we focus on the fat-tree topology [3-

4,8] used in most scalable cluster systems nowadays.

We propose a cyclic multicast scheme for the m-port n-

tree (a fat-tree) InfiniBand networks [5] based on the

hardware supported multicast feature of the IBA and

the characteristics of m-port n-tree fat-trees. To

evaluate the proposed method, we implement the

cyclic multicast scheme, the OpenSM multicast

scheme, and a unicast scheme on an m-port n-tree

InfiniBand network simulator that is written in Java.

The simulation results show that the proposed cyclic

multicast scheme outperforms the unicast schemes for

all test cases. The lager the message size, the number

of multicast source nodes, and the size of the multicast

group, the better speedup can be expected from the

proposed multicast schemes.

The rest of this paper is organized as follows.

Section 2 will introduce the fat-tree-based InfiniBand

networks. The proposed multicast schemes will be

described in Section 3. Section 4 will give the

simulation results for the proposed multicast schemes.

The conclusions will be given in Section 5.

2. Preliminaries

2.1. InfiniBand Architecture (IBA)

The InfiniBand network is a packet-switching

network. Since the mapping between destination local

identifier (DLID) and output port is one-to-one, in

order to support multiple paths, the IBA defines an

LID Mask Control (LMC) value that can be assigned

to each endport. The LMC is a 3-bit field that

represents 2LMC paths (maximum of 128 paths).

The IBA also supports hardware multicast. In the

IBA, each multicast group is assigned a multicast LID

and a global identifier (GID) by the subnet manager.

The subnet manager will setup the forwarding table of

Proceedings of the 2005 Fourth IEEE International Symposium on Network Computing and Applications (NCA’05)
0-7695-2326-9/05 $20.00 © 2005 IEEE Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on July 30,2025 at 00:14:32 UTC from IEEE Xplore. Restrictions apply.

each switch for each multicast group according its LID

and GID. To perform a multicast operation in an

InfiniBand network, the source processing node uses

the multicast LID and the GID of a multicast group to

send packets. When a switch receives a multicast

packet, it replicates the packet and forwards the packet

to the corresponding output ports according to its

forwarding table.

2.2. The m-Port n-Tree InfiniBand Networks

In [5], we have proposed an m-port n-tree

InfiniBand network IBFT(m, n). It has the following

characteristics:

1. The height of IBFT(m, n) is n + 1.

2. IBFT(m, n) consists of 2 (2)nm³ processing

nodes and () 1
(2 1) / 2

n
n m

-- ³ InfiniBand

switches.

3. Each switch has m ports.

An example is shown in Figure 1.

3

00, 1à ð
1 2

4

001

3

00, 2à ð
1 2

4

001 010

3

01, 2à ð
1 2

4

100

3

10, 1à ð
1 2

4 3

11, 1à ð
1 2

4

3

10, 2à ð
1 2

4

101 110

3

11, 2à ð
1 2

4

200

3

20, 1à ð
1 2

4 3

21, 1à ð
1 2

4

3

20, 2à ð
1 2

4

201 210

3

21, 2à ð
1 2

4

300

3

30, 1à ð
1 2

4 3

31, 1à ð
1 2

4

3

30, 2à ð
1 2

4

301 310

3

31, 2à ð
1 2

4

011 111 211 311

01, 0à ð
1 2 3 4

10, 0à ð
1 2 3 4

11, 0à ð
1 2 3 4

3

01, 1à ð
1 2

4

00, 0à ð
1 2 3 4

000

Processing

Node

P

InfiniBand

Switch

,w là ðSW

p

Figure 1. An example of a 4-port 3-tree
InfiniBand network.

3. The Proposed Multicast Scheme

The proposed multicast scheme consists of three

sub-schemes, the processing node addressing scheme,

the path selection scheme, and the forwarding table

assignment scheme. We use the four definitions in [5],

the greatest common prefix, the least common

ancestors, the greatest common prefix group, and the

rank of processing node.

3.1. The Processing Node Addressing Scheme

Given an m-port n-tree InfiniBand network IBFT(m,

n), in the multicast scheme, every processing node in

IBFT(m, n) is assigned a set of LIDs. The set of LIDs

assigned to each processing node is formed by the

combination of one base LID and a LID Mask Control

value LMC, where LMC = 1

2log (/ 2)nm - . For

processing node 0 1 1()nP p p p p -= L in IBFT(m, n),

the set of LIDs assigned to P(p), denoted by

LIDset(P(p)), is {BaseLID(P(p)), BaseLID(P(p)) +

1, …, BaseLID(P(p)) + (2LMC 1)}, where

BaseLID(P(p)) = ()
1

(1)

0

2 / 2 1
n

n iLMC

i

i

p m
-

- +

=

å õ³ ³ +æ ö
ç ÷
ä is

the base LID of P(p). There are 2LMC LIDs in

LIDset(P(p)), which indicates that there are maximal

2LMC paths between any pair of processing nodes.

3.2. The Path Selection Scheme

We propose a cyclic path selection scheme

according to the cyclic grouping policy to take the

advantage of multiple LIDs of a processing node such

that the duplication of a packet will not occur in the

ascending phase. The grouping policy is to decide

what processing nodes are in the same group for a

given destination processing node P(p). For the

processing nodes in the same group, they will send

messages to the destination processing node P(p) by

choosing the same LID of P(p).

Given an m-port n-tree InfiniBand network IBFT(m,

n), for a destination processing node

0 1 1()nP p p p p -= L , source processing nodes P(s1)

and P(s2) are in the same cyclic group CG(P(p), l, y) if

the following two rules are satisfied.

Rule 1: The level l of the least common ancestors

lca(P(p), P(s1)) is the same as that of lca(P(p), P(s2)).

Rule 2: P(s1) and P(s2) have the same common

suffix y and |y| = n - l - 1.

The cyclic path selection scheme is performed as

follows. For a destination processing node

0 1 1()nP p p p p -= L and a source processing node

0 1 1()nP p p p p -¡ ¡ ¡ ¡= L in CG(P(p), l, y), when P(p')

wants to send messages to P(p), it will select

BaseLID(P(p)) + rank(gcpg(0 1 lp p p¡ ¡ ¡L , l + 1), P(p'))

as the LID of P(p).

Figure 2 shows an example of the cyclic path

selection scheme for a 4-port 3-tree InfiniBand

network IBFT(4, 3). Given an destination processing

node P(200), we can divide the source processing

nodes into cyclic groups CG(P(200), 0, 00) = {P(000),

P(100), P(300)}, CG(P(200), 0, 01) = {P(001), P(101),

P(301)}, CG(P(200), 0, 10) = {P(010), P(110),

P(310)}, CG(P(200), 0, 11) = {P(011), P(111),

P(311)}, CG(P(200), 1, 0) = {P(210)}, CG(P(200), 1,

1) = {P(211)}, and CG(P(200), 2, e) = {P(201)} based

on the cyclic grouping policy, where e is a null string.

Assume that there are four source processing nodes

P(000), P(001), P(010), and P(011) want to send

messages to the destination processing node P(200).

Since the four source processing nodes are in different

groups of CG(P(200), 0), they will choose the different

LIDs 33, 34, 35, and 36 (33 + 0, 33 + 1, 33 + 2, and 33

Proceedings of the 2005 Fourth IEEE International Symposium on Network Computing and Applications (NCA’05)
0-7695-2326-9/05 $20.00 © 2005 IEEE Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on July 30,2025 at 00:14:32 UTC from IEEE Xplore. Restrictions apply.

+ 3) of the destination processing node P(200) and

send messages through paths Q, R, S, and T,

respectively.

According to the path selection scheme, the

duplication of packets can be avoided in the ascending

phase when a processing node sends packets to

different destination processing nodes. An example is

shown in Figure 3. In Figure 3, the source processing

node P(000) sends messages to P(200), P(201), P(210),

and P(211) through routes Q, R, S, and T, respectively.

From Figure 3, we can see that all routes take the same

path in the ascending phase.

00, 1à ð

001

00, 2à ð

001 010

01, 2à ð

100

3

10, 1à ð
1 2

4 3

11, 1à ð
1 2

4

3

10, 2à ð
1 2

4

101 110

3

1 2

4

200 201 210

3

21, 2à ð
1 2

4

300

3

30, 1à ð
1 2

4 3

31, 1à ð
1 2

4

3

30, 2à ð
1 2

4

301 310

3

31, 2à ð
1 2

4

011 111 211 311

01, 0à ð 10, 0à ð 11, 0à ð

01, 1à ð

00, 0à ð

000

11, 2à ð
Q

R

S

T

CG(P(200), 2, e) = { }

CG(P(200), 1, 1) = { }

CG(P(200), 1, 0) = { }

CG(P(200), 0, 11) = { }

CG(P(200), 0, 10) = { }

CG(P(200), 0, 01) = { }

CG(P(200), 0, 00) = { }

3

1 2

43

1 2

4

3

1 2

43

1 2

4 3

1 2

4 3

1 2

4

3

1 2

4

20, 2à ð

20, 1à ð 21, 1à ð

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Figure 2. The cyclic path selection scheme.

001001 010

3

01, 2à ð
1 2

4

100

3

10, 1à ð
1 2

4 3

11, 1à ð
1 2

4

3

10, 2à ð
1 2

4

101 110

3

11, 2à ð
1 2

4

200

3

21, 1à ð
1 2

4

201 210 300

3

30, 1à ð
1 2

4 3

31, 1à ð
1 2

4

3

30, 2à ð
1 2

4

301 310

3

31, 2à ð
1 2

4

011 111 211 311

01, 0à ð
1 2 3 4

10, 0à ð
1 2 3 4

11, 0à ð
1 2 3 4

3

01, 1à ð
1 2

4
Q

R

S

T

000

00, 2à ð

00, 1à ð

00, 0à ð

20, 1à ð

20, 2à ð 21, 2à ð
3

1 2

4

3

1 2

4 3

1 2

4

3

1 2

4 3

1 2

4

1 2 3 4

Figure 3. An example of one-to-many multicast.

3.3. The Forwarding Table Assignment Scheme

The forwarding table assignment consists of two

phases: the one-to-one forwarding table assignment

and the multicast forwarding table assignment based

on union operation.

3.3.1. The One-to-one Forwarding Table Assignment

The one-to-one forwarding table assignment is

described in section 4.3 of [5].

3.3.2. The Multicast Forwarding Table Assignment

Based on Union Operations

After the one-to-one forwarding table assignment is

performed, we can setup the multicast forwarding table

for a given source processing node and a multicast

group based on union operations. Let

0 1 1()nP p p p p -= L be a source processing node and

lid = 1 2{ , ,..., | 2 (2) }n

tlid lid lid t m¢ ³ be the DLID of

a multicast group, where

1 2{ , ,..., | 2 (2) }n

tlid lid lid t m¢ ³ is the set of LIDs of

destination processing nodes in a multicast group. For

each switch SW<w, l>, based on Equations (1) and (2),

we can determine the output port of a packet whose

DLID is lid1, lid2, …, and lidt as
1

, kSW w l< > ,

2
, kSW w l< > , … , and ,

tkSW w l< > , respectively. It

means that when a packet whose DLID is lid1, lid2, …,

and lidt arrives in switch SW<w, l>, it will be

forwarded to port
1

, kSW w l< > ,
2

, kSW w l< > , … ,

and ,
tkSW w l< > , respectively. Since an InfiniBand

switch can duplicate a packet to different output ports

and the path selection schemes given in Section 3.2

will prevent the packet from being duplicated in the

ascending phase, the output ports of a multicast packet

1 2{ , ,..., | 2 (2) }n

tlid lid lid t m¢ ³ can be set as the union

of
1

, kSW w l< > ,
2

, kSW w l< > , … , and

,
tkSW w l< > in switch SW<w, l>.

001001 010

3

01, 2à ð
1 2

4

200

3

21, 1à ð
1 2

4

201 210011 211

3

01, 1à ð
1 2

4

00, 0à ð

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

000

DLID
Output

Port

{33,37,41,45} {3}

DLID
Output

Port

{33,37,41,45} {3}

DLID
Output

Port

{33,37,41,45} {3}

DLID

Output

Port

{33,37,41,45} {1,2}

DLID

Output

Port

{33,37,41,45} {1,2}

DLID
Output

Port

{33,37,41,45} {1,2}

20, 1à ð

20, 2à ð 21, 2à ð00, 2à ð

00, 1à ð

3

1 2

4

3

1 2

4

1 2 3 4

3

1 2

4

3

1 2

4 3

1 2

4

Figure 4. An example of multicast forwarding
table setup.

An example is shown in Figure 4. In Figure 4,

assume that processing node P(000) wants to send

multicast packets to processing nodes P(200), P(201),

P(210) and P(211). The lid set of the multicast group

is {33, 37, 41, 45}. From Figure 5, we can determine

that its output ports in switch SW<00, 2> = {3},

SW<00, 1> = {3}, SW<00, 0> = {3}, SW<20, 1> = {1,

2}, SW<20, 2> = {1, 2}, and SW<21, 2> = {1, 2},

respectively. The multicast operation can be

performed correctly.

4. Performance Evaluation

To evaluate the performance of the proposed

multicast scheme, we design an m-port n-tree

InfiniBand network simulator by using Java. Three

schemes, the proposed cyclic multicast scheme, the

OpenSM multicast scheme, and the unicast scheme

were simulated for performance evaluation.

Proceedings of the 2005 Fourth IEEE International Symposium on Network Computing and Applications (NCA’05)
0-7695-2326-9/05 $20.00 © 2005 IEEE Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on July 30,2025 at 00:14:32 UTC from IEEE Xplore. Restrictions apply.

An 8-port 3-tree InfiniBand network is simulated.

The network contains 80 switches and 128 processing

nodes. Here we only show the simulation results of

40%-to-40% multicast in Figure 5 to Figure 7. Since

there are more than one source processing nodes send

messages to the destination processing nodes, the

traffic congestion did occur. From the simulation

results, we can see that the multicast schemes

outperform the unicast scheme. Moreover, our cyclic

multicast scheme outperforms the OpenSM multicast

scheme when the destination group size is small (10%

and 40%). This is because the OpenSM multicast

scheme only builds one multicast tree, while our

scheme builds more multicast trees to take the

advantages of available bandwidth of fat-tree topology.

When the destination group size is large (100%), the

performance of our scheme is a little better than that of

the OpenSM multicast scheme since the serious traffic

congestion in the descending phase.

5. Conclusions

In this paper, we propose a hardware supported

multicast scheme for the fat-tree-based InfiniBand

networks. The simulation results show that the

proposed cyclic multicast scheme can speed up the

execution of multicast operations. From the

simulations results, we have the following remarks:

Remark 1: We observe that the proposed multicast

scheme outperforms the unicast scheme for all

simulated cases. This result indicates that the

hardware supported multicast of the IBA can help to

speedup the execution of multicast operations.

Remark 2: Comparing to the OpenSM multicast

scheme, for one-to-many case, the performance of the

cyclic multicast scheme is the same as that of the

OpenSM multicast method. For many-to-many and

all-to-many cases, the cyclic multicast scheme

outperforms the OpenSM multicast method. For

many-to-all case, the performance of the cyclic

multicast scheme is a little better than that of the

OpenSM multicast method.

�

���

���

���

���

����

�� �� ��� ��� ��� �	 �	 �	

����������	
����

�
��
�
��
�
�	

������� ����������������

����������������

�

�

��

��

��

��

��

��

�� ��� ��� �	� ����

���
����
�������

�
��
��
��

��

������� ������
���������

������
���������

(a) Small size (b) Large size
Figure 5. 40%-to-10% multicast.

�

���

���

���

���

����

����

����

����

�� �� ��� ��� ��� �	 �	 �	

����������	
����

�
��
�
��
�
�	

������� ����������������

����������������

�

��

��

��

��

��

��

��

	
 ��
 ��
 ��
 ��	

��
����������
���

�
��
��
��

��

������
 ����������
����

 ���������
����

(a) Small size (b) Large size
Figure 6. 40%-to-40% multicast.

�

�
�

�

�
�

�

�
�

�

�
�

�� �� ��� ��� ��� �	 �	 �	

����������	
����

�
��
�
��
�
�	

������� ����������������

����������������

�

��

��

��

��

���

���

���

���

�� ��� ��� ��� ����

	
�
�
�����������

�
��
��
��

��

����
�� ����
��������
��

�������������
��

(a) Small size (b) Large size
Figure 7: 40%-to-all multicast.

Acknowledgments

The work in this paper was partially supported by

National Science Council and Ministry of Economic

Affairs of the Republic of China under contract NSC-

93-2213-E-007-100, NSC-93-2752-E-001-004-PAE

and 94-EC-17-A-01-S1-038.

References

[1] J. Duato, S. Yalamanchili, and L. Ni, Interconnection

Networks - An Engineering Approach, IEEE CS Press, 1997.

[2] InfiniBand™ Trade Association, InfiniBand™

Architecture Specification Volume 1, Release 1.2, October

2004.

[3] S. Kumar and L. V. Kale, “Scaling Collective Multicast

on Fat-Tree Networks,” To appear in International

Conference on Parallel and Distributed Systems, 2004.

[4] C. E. Leiserson, “Fat-Trees: Universal Networks for

Hardware-Efficient Supercomputing,” IEEE Transactions on

Computers, vol. 34, no. 10, October 1985, pp. 892-901.

[5] X. Y. Lin, Y. C. Chung, and T. Y. Huang, “A Multiple

LID Routing Scheme for Fat-Tree-Based InfiniBand

Networks,” Proceedings of IEEE International Parallel and

Distributed Proceeding Symposiums (CD-ROM), April 2004.

[6] Linux InfiniBand Project.

http://infiniband.sourceforge.net.

[7] P. López, J. Flich, and J. Duato, “Deadlock-Free

Routing in InfiniBand™ through Destination Renaming,” in

Proceedings of the International Conference on Parallel

Processing, ICPP '01, Sept. 2001, pp. 427-434.

[8] F. Petrini and M. Vanneschi, “k-ary n-trees: High

Performance Networks for Massively Parallel

Architectures,” in Proceedings of the 11th International

Parallel Processing Symposium, IPPS’97, April 1997, pp.

87-93.

Proceedings of the 2005 Fourth IEEE International Symposium on Network Computing and Applications (NCA’05)
0-7695-2326-9/05 $20.00 © 2005 IEEE Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on July 30,2025 at 00:14:32 UTC from IEEE Xplore. Restrictions apply.

