Multicast in Fat-Tree-Based InfiniBand Networks

Jiazheng Zhou, Xuan-Yi Lin, Chun-Hsien Wu, and Yeh-Ching Chung
Department of Computer Science
National Tsing-Hua University, Hsinchu, Taiwan 30013, ROC
{jzzhou, xylin, chwu, ychung}@cs.nthu.edu.tw

Abstract

The multicast operation is a very commonly used
operation in parallel applications. With the hardware
supported multicast of the InfiniBand Architecture
(IBA), we propose a cyclic multicast scheme for fat-
tree-based (m-port n-tree) InfiniBand networks. The
basic concept of the proposed cyclic multicast scheme
is to find the union sets of the output ports of switches
in the paths between the source processing node and
each destination processing node in a multicast group.
Based on the union sets and the path selection scheme,
the forwarding table for a given multicast group can
be constructed. We implement the proposed multicast
scheme along with the OpenSM multicast scheme and
the unicast scheme on an m-port n-tree InfiniBand
network simulator. The simulation results show that
the proposed multicast scheme outperforms the unicast
scheme for all simulated cases. For many-to-many
and all-to-many cases, the cyclic multicast scheme
outperforms the OpenSM multicast scheme. For
many-to-all case, the performance of the cyclic
multicast scheme is a little better than that of the
OpenSM multicast scheme.

1. Introduction

Interconnection networks in cluster systems have
great impact on the performance of communication-
bounded applications. The InfiniBand Architecture
(IBA) [2] is a new industry-standard architecture for
server 1/O and inter-server communication. The IBA
enables high-speed, low-latency communication
between connected devices and it is suitable for the
interconnection network of a cluster system.

The multicast operation [1,7] is a very commonly
used operation in cluster systems. Since the
InfiniBand Architecture supports hardware multicast,
one can take advantage of this feature to speedup the
multicast operation. OpenSM [6] is an implementation
of subnet manager. In OpenSM, it implements a
hardware supported multicast scheme by using a

Proceedings of the 2005 Fourth IEEE International Symposium on Network Computing and Applications (NCA’05)
O_Mggﬁé%ﬂgwgagﬁ%%%@;jﬁEEEese University of Hong Kong CUHK(Shenzhen). Downloaded on July 30,2025 at 00:14:32 UTC from IEEE Xplore. R

spanning tree approach to construct the multicast paths
for a given multicast group. However, its performance
may not be satisfied since it does not take the
characteristics of a network topology into account.

In this paper, we focus on the fat-tree topology [3-
4,8] used in most scalable cluster systems nowadays.
We propose a cyclic multicast scheme for the m-port n-
tree (a fat-tree) InfiniBand networks [5] based on the
hardware supported multicast feature of the IBA and
the characteristics of m-port n-tree fat-trees. To
evaluate the proposed method, we implement the
cyclic multicast scheme, the OpenSM multicast
scheme, and a unicast scheme on an m-port n-tree
InfiniBand network simulator that is written in Java.
The simulation results show that the proposed cyclic
multicast scheme outperforms the unicast schemes for
all test cases. The lager the message size, the number
of multicast source nodes, and the size of the multicast
group, the better speedup can be expected from the
proposed multicast schemes.

The rest of this paper is organized as follows.
Section 2 will introduce the fat-tree-based InfiniBand
networks. The proposed multicast schemes will be
described in Section 3. Section 4 will give the
simulation results for the proposed multicast schemes.
The conclusions will be given in Section 5.

2. Preliminaries

2.1. InfiniBand Architecture (IBA)

The InfiniBand network is a packet-switching
network. Since the mapping between destination local
identifier (DLID) and output port is one-to-one, in
order to support multiple paths, the IBA defines an
LID Mask Control (LMC) value that can be assigned
to each endport. The LMC is a 3-bit field that
represents 2"V¢ paths (maximum of 128 paths).

The IBA also supports hardware multicast. In the
IBA, each multicast group is assigned a multicast LID
and a global identifier (GID) by the subnet manager.
The subnet manager will setup the forwarding table of

YF]',F.

each switch for each multicast group according its LID
and GID. To perform a multicast operation in an
InfiniBand network, the source processing node uses
the multicast LID and the GID of a multicast group to
send packets. When a switch receives a multicast
packet, it replicates the packet and forwards the packet
to the corresponding output ports according to its
forwarding table.

2.2. The m-Port n-Tree InfiniBand Networks

In [5], we have proposed an m-port n-tree
InfiniBand network /BFT(m, n). It has the following
characteristics:

1. The height of IBFT(m,n)isn+ 1.

2. IBFT(m, n) consists of 23(m/2)" processing
nodes and (2n-1)3(m/2)"" InfiniBand

switches.
3. Each switch has m ports.
An example is shown in Figure 1.

400, 03
1.2 3.4

401, 00 al0, 03
1234 123 4

all, 08
1.2 3 4

T a3 4
al0, 18 | | a11, 10| | 420, 18| | 421, 18 | | a30, 10 | | 431, 18
12 12 12 12 12 12 InfiniBand

| I | | Switch
00, 24| | a01, 28

3 4 3 4 3 4 3 4 3 4 3 4
r@®
1 2 1 2

al0, 24| | all, 28 | | 420, 28| | a21, 20| | 430, 28| | 431, 20
Figure 1. An example of a 4-port 3-tree
InfiniBand network.

34
200, 18
12

3 4
01, 10
12

3 4 3 4 3 4 3 4 SW |aw, 18

3 4 3 4

3. The Proposed Multicast Scheme

The proposed multicast scheme consists of three
sub-schemes, the processing node addressing scheme,
the path selection scheme, and the forwarding table
assignment scheme. We use the four definitions in [5],
the greatest common prefix, the least common
ancestors, the greatest common prefix group, and the
rank of processing node.

3.1. The Processing Node Addressing Scheme

Given an m-port n-tree InfiniBand network /BFT(m,
n), in the multicast scheme, every processing node in
IBFT(m, n) is assigned a set of LIDs. The set of LIDs
assigned to each processing node is formed by the
combination of one base LID and a LID Mask Control

value LMC, where LMC = log,(m/2)"" . For
processing node P(p = p,p,---p,.,) in IBFT(m, n),

the set of LIDs assigned to P(p), denoted by
LIDset(P(p)), is {BaseLID(P(p)), BaseLID(P(p)) +

1, ..., BaseLID(P(p)) + (2"“-1)}, where
2 n-1 " ~

BaseLID(P(p)) = 2358 p,3(m/2) " g+1 is
Ci=0 -

the base LID of P(p). There are 2" LIDs in
LIDset(P(p)), which indicates that there are maximal
2FMC paths between any pair of processing nodes.

3.2. The Path Selection Scheme

We propose a cyclic path selection scheme
according to the cyclic grouping policy to take the
advantage of multiple LIDs of a processing node such
that the duplication of a packet will not occur in the
ascending phase. The grouping policy is to decide
what processing nodes are in the same group for a
given destination processing node P(p). For the
processing nodes in the same group, they will send
messages to the destination processing node P(p) by
choosing the same LID of P(p).

Given an m-port n-tree InfiniBand network /BFT(m,
n), for a destination processing node
P(p=pyp,--p,,) , source processing nodes P(s)
and P(s,) are in the same cyclic group CG(P(p), 1, y) if
the following two rules are satisfied.

Rule 1: The level / of the least common ancestors
lca(P(p), P(sy)) is the same as that of lca(P(p), P(sy)).

Rule 2: P(s;) and P(s;) have the same common
suffixyand |y|=n-1/-1.

The cyclic path selection scheme is performed as
follows. For a destination processing node
P(p=pyp,--p,,) and a source processing node

P(pi= pipi--piy) in CG(PPp), I, y), when P(p’)
wants to send messages to P(p), it will select

BaseLID(P(p)) + rank(gcpg(pipi--- pj, [+ 1), P(p")
as the LID of P(p).

Figure 2 shows an example of the cyclic path
selection scheme for a 4-port 3-tree InfiniBand
network /BFT(4, 3). Given an destination processing
node P(200), we can divide the source processing
nodes into cyclic groups CG(P(200), 0, 00) = {P(000),
P(100), P(300)}, CG(P(200), 0, 01) = {P(001), P(101),
P(301)}, CG(P(200), 0, 10) = {P(010), P(110),
P(310)}, CG(P(200), 0, 11) = {P011), P(111),
P(311)}, CG(P(200), 1, 0) = {P(210)}, CG(P(200), 1,
1) = {P(211)}, and CG(P(200), 2, e) = {P(201)} based
on the cyclic grouping policy, where € is a null string.
Assume that there are four source processing nodes
P(000), P(001), P(010), and P(011) want to send
messages to the destination processing node P(200).
Since the four source processing nodes are in different
groups of CG(P(200), 0), they will choose the different
LIDs 33, 34, 35, and 36 (33 + 0,33 + 1, 33 + 2, and 33

SRR

Proceedings of the 2005 Fourth IEEE International Symposium on Network Computing and Applications (NCA’05) gr
O_ﬁgggﬁé%ﬂg?@gagﬁ%weéﬂdesﬁEEEese University of Hong Kong CUHK(Shenzhen). Downloaded on July 30,2025 at 00:14:32 UTC from IEEE Xplore. Re!

+ 3) of the destination processing node P(200) and
send messages through paths O, R, S, and T,
respectively.

According to the path selection scheme, the
duplication of packets can be avoided in the ascending
phase when a processing node sends packets to
different destination processing nodes. An example is
shown in Figure 3. In Figure 3, the source processing
node P(000) sends messages to P(200), P(201), P(210),
and P(211) through routes O, R, S, and T, respectively.
From Figure 3, we can see that all routes take the same
path in the ascending phase.

CG(P(200), 0, 00) = 4@
CG(P(200), 0, 01) O
CG(P(200), 0, 10) @
CG(P(200), 0, 11)

CG(P(200), 1,0) =
CG(PQ00), 1,1) =
CG(P(200), 2, ¢) =

¢
{
g
t
¢
{
g
t

@)
)
e
@

{
t
¢
1

S
Tooodge

1 ’ 2 1
s []
X 4][3 4|[3
Lazn 2 | | 430, 25| | 831, 25
1 1 2
j w v
(30030}

Figure 3. An example of one-to-many multicast.
3.3. The Forwarding Table Assignment Scheme

The forwarding table assignment consists of two
phases: the one-to-one forwarding table assignment
and the multicast forwarding table assignment based
on union operation.

3.3.1. The One-to-one Forwarding Table Assignment

The one-to-one forwarding table assignment is
described in section 4.3 of [5].

3.3.2. The Multicast Forwarding Table Assignment
Based on Union Operations

After the one-to-one forwarding table assignment is
performed, we can setup the multicast forwarding table
for a given source processing node and a multicast
group based on union operations. Let
P(p=pyp,p,.,) be a source processing node and

lid = {lid,,lid, ,...,lid, |t ¢ 23 (m/2)"} be the DLID of

a multicast group, where

Proceedings of the 2005 Fourth IEEE International Symposium on Network Computing and Applications (NCA’05)
O_ﬁgggﬁé%ﬂg?@gagﬁ%%%@;jﬁEEEese University of Hong Kong CUHK(Shenzhen). Downloaded on July 30,2025 at 00:14:32 UTC from IEEE Xplore. R

{lid, lid,,...,lid, |t ¢ 23(m/2)"} is the set of LIDs of
destination processing nodes in a multicast group. For
each switch SW<w, I>, based on Equations (1) and (2),
we can determine the output port of a packet whose
DLID is lid,, lid,, ..., and lid, as SW <w,[>0

SW <w,l > s and SW <w,! > respectively. It

means that when a packet whose DLID is /idy, lid,, ...,
and /id, arrives in switch SW<w, [>, it will be
forwarded to port SW <w,l > SW <w,l > s
and SW <w,l >, , respectively. Since an InfiniBand
switch can duplicate a packet to different output ports
and the path selection schemes given in Section 3.2
will prevent the packet from being duplicated in the
ascending phase, the output ports of a multicast packet
{lid,,lid,,...,lid, |t ¢ 23(m/2)"} can be set as the union
of SW<w,l >, SW< w,l >

SW <w,l> in switch SW<w, [>.

, and

Output
DUD Port

{33,37,41,45)

Output | |
DLID Port

{33,37,41,45)

Output
DLD Port

{33,37,41,45}

Output
DLD Port

{33,37,41,45} j

Output
DLID Port

{33,37,41,45)]

DLID Port

33 37
34 38
35 39
36 40

example of multicast forwarding
table setup.

41 45
42 46
43 47
44 48

1 5
2 6
3 7
4 8
An

Figure 4.

An example is shown in Figure 4. In Figure 4,
assume that processing node P(000) wants to send
multicast packets to processing nodes P(200), P(201),
P(210) and P(211). The /id set of the multicast group
is {33, 37, 41, 45}. From Figure 5, we can determine
that its output ports in switch SW<00, 2> = {3},
SW<00, 1> = {3}, SW<00, 0> = {3}, SW<20, 1> = {1,
2}, SW<20, 2> = {1, 2}, and SW<21, 2> = {1, 2},
respectively. The multicast operation can be
performed correctly.

4. Performance Evaluation

To evaluate the performance of the proposed
multicast scheme, we design an m-port n-tree
InfiniBand network simulator by using Java. Three
schemes, the proposed cyclic multicast scheme, the
OpenSM multicast scheme, and the unicast scheme
were simulated for performance evaluation.

Output

{33,37.41,45)

YF]',F.

An 8-port 3-tree InfiniBand network is simulated.
The network contains 80 switches and 128 processing
nodes. Here we only show the simulation results of
40%-t0-40% multicast in Figure 5 to Figure 7. Since
there are more than one source processing nodes send
messages to the destination processing nodes, the
traffic congestion did occur. From the simulation
results, we can see that the multicast schemes
outperform the unicast scheme. Moreover, our cyclic
multicast scheme outperforms the OpenSM multicast
scheme when the destination group size is small (10%
and 40%). This is because the OpenSM multicast
scheme only builds one multicast tree, while our
scheme builds more multicast trees to take the
advantages of available bandwidth of fat-tree topology.
When the destination group size is large (100%), the
performance of our scheme is a little better than that of
the OpenSM multicast scheme since the serious traffic
congestion in the descending phase.

5. Conclusions

In this paper, we propose a hardware supported
multicast scheme for the fat-tree-based InfiniBand
networks. The simulation results show that the
proposed cyclic multicast scheme can speed up the
execution of multicast operations. From the
simulations results, we have the following remarks:

Remark 1: We observe that the proposed multicast
scheme outperforms the unicast scheme for all
simulated cases. This result indicates that the
hardware supported multicast of the IBA can help to
speedup the execution of multicast operations.

Remark 2: Comparing to the OpenSM multicast
scheme, for one-to-many case, the performance of the
cyclic multicast scheme is the same as that of the
OpenSM multicast method. For many-to-many and
all-to-many cases, the cyclic multicast scheme
outperforms the OpenSM multicast method. For
many-to-all case, the performance of the cyclic
multicast scheme is a little better than that of the
OpenSM multicast method.

1000 r
B OpenSM Multicas) B Unicast

800 - O Cyclic Multicast

B OpenSM Multicast

600 1

Time (us)

400 F

200

0
32 64 128 25 512 1K 2K 4K 8K 16K 3K 64K 128K
Data Size (Bytes) Data Size (Bytes)

(a) Small size (b) Large size
Figure 5. 40%-to-10% multicast.

Proceedings of the 2005 Fourth IEEE International Symposium on Network Computing and Applications (NCA’'05)
O_ﬁgggﬁé%ﬂg?@sagﬁ%%eéﬁesT'EﬁEese University of Hong Kong CUHK(Shenzhen). Downloaded on July 30,2025 at 00:14:32 UTC from IEEE Xplore. R

1600
1400
1200
1000

800

[[Unicast
O Cyclic Multicast

B Unicast
O Cyclic Multicast

B OpenSM Multicast

B OpenSM Multicast

Time (us)

600

400 ’-i_‘
200

32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K
Data Size (Bytes) Data Size (Bytes)

(a) Small size (b) Large size
Figure 6. 40%-t0-40% multicast.

160
140
120
100

80

15 1
1 %
05 I:L‘ 20
: L 0

264 18 256

B Unicast

B OpenSM Multicast|
O Cyclic Multicast M

‘Time (ms)
Time (ms)

512 1K 2K 4K
Data Size (Bytes)

(a) Small size (b) Large size
Figure 7: 40%-to-all multicast.

Data Size (Bytes)

Acknowledgments

The work in this paper was partially supported by
National Science Council and Ministry of Economic
Affairs of the Republic of China under contract NSC-
93-2213-E-007-100, NSC-93-2752-E-001-004-PAE
and 94-EC-17-A-01-S1-038.

References

[1] J. Duato, S. Yalamanchili, and L. Ni, Interconnection
Networks - An Engineering Approach, IEEE CS Press, 1997.

[2] InfiniBand™ Trade Association, InfiniBand™
Architecture Specification Volume 1, Release 1.2, October
2004.

[3] S.Kumar and L. V. Kale, “Scaling Collective Multicast
on Fat-Tree Networks,” To appear in [nternational
Conference on Parallel and Distributed Systems, 2004.

[4] C. E. Leiserson, “Fat-Trees: Universal Networks for
Hardware-Efficient Supercomputing,” IEEE Transactions on
Computers, vol. 34, no. 10, October 1985, pp. 892-901.

[5] X.Y.Lin, Y. C. Chung, and T. Y. Huang, “A Multiple
LID Routing Scheme for Fat-Tree-Based InfiniBand
Networks,” Proceedings of IEEE International Parallel and
Distributed Proceeding Symposiums (CD-ROM), April 2004.

[6] Linux InfiniBand
http://infiniband.sourceforge.net.

[71 P. Loépez, J. Flich, and J. Duato, “Deadlock-Free
Routing in InfiniBand™ through Destination Renaming,” in
Proceedings of the International Conference on Parallel
Processing, ICPP '01, Sept. 2001, pp. 427-434.

[8] F. Petrini and M. Vanneschi, ‘“k-ary n-trees: High
Performance ~ Networks for Massively Parallel
Architectures,” in Proceedings of the 11th International
Parallel Processing Symposium, IPPS’97, April 1997, pp.
87-93.

Project.

YF]',F.

