CFR: A Peer-to-Peer Collaborative File Repository
System

Meng-Ru Lin, Ssu-Hsuan Lu, Tsung-Hsuan Ho, Peter Lin, and Yeh-Ching Chung?

Department of Computer Science, National Tsing Hua University
Hsin-Chu, Taiwan300, ROC
{mrlin, shlu, anson}@sslab.cs.nthu.edu.tw, peter@dr-lin.com, ychung@cs.nthu.edu.tw

Abstract. Due to the high availability of the Internet, many large cross-
organization collaboration projects, such as SourceForge, grid systems etc.,
have emerged. One of the fundamental requirements of these collaboration
efforts is a storage system to store and exchange data. This storage system must
be highly scalable and can efficiently aggregate the storage resources
contributed by the participating organizations to deliver good performance for
users. In this paper, we propose a storage system, Collaborative File Repository
(CFR), for large scale collaboration projects. CFR uses peer-to-peer techniques
to achieve scalability, efficiency, and ease of management. In CFR, storage
nodes contributed by the participating organizations are partitioned according to
geographical regions. Files stored in CFR are automatically replicated to all
regions. Furthermore, popular files are duplicated to other storage nodes of the
same region. By doing so, data transfers between users and storage nodes are
confined within their regions and transfer efficiency is enhanced. Experiments
show that our replication can achieve high efficiency with a small number of
duplicates.

Keywords: peer-to-peer, storage system, Coupon Collection Problem, CFR.

1 Introduction

The exploding growth of the Internet has enabled organizations across the globe to
share resources and collaborate in large scale projects such as SourceForge [21],
SEEK]20], and grid systems [1] [5] [11] [25], etc. One of the most fundamental
needs of these types of projects is a platform to store and exchange data. A storage
system is needed for keeping and distributing the large amounts of source codes,
programs, and documentations. To construct such a storage system, machines
contributed by volunteering organizations are used to store and mirror the generated
data. How to build a scalable and efficient storage system to aggregate the resources
contributed by the participating organizations has been an active research issue.

The peer-to-peer computing has received much attention in the past few years.
Pioneering applications such as Napster [16] and KaZaA [9] offered platforms for

1 The corresponding author

users to easily exchange files without a centralized storage. The second generation of
peer-to-peer storage systems [2] [10] [15] [18], mostly built on top of structured
routing schemes [19][22], further provide mechanisms to guarantee on object location,
and adopt more sophisticated replication and caching schemes.

The benefits of peer-to-peer techniques include scalability, fault tolerance,
resource sharing, and load balancing among the participating machines. These
appealing properties closely match the requirements of storage systems used in large
scale collaboration projects mentioned above.

In this paper, we propose a scalable, loosely coupled, and efficient storage system,
Cooperative File Repository (CFR), for large scale collaboration projects. The CFR
consists of two modules, overlay management and file management modules. The
overlay management module maintains connectivity between the participating nodes
using a two-layer overlay network. The file management module provides an
interface for users to access CFR and manages the files stored in CFR. Replicas are
automatically created for all files stored in CFR. Caching is employed to further
enhance performance. CFR achieves scalability by incorporating peer-to-peer
techniques to aggregate the contributed storage nodes. Efficiency is achieved by
exploiting the geographic locality of the storage nodes. Using the region overlay,
CFR can replicate files to storage nodes in all geographic areas.

To evaluate the performance of CFR, both simulation analysis and experimental
test are conducted. Simulation results verify that our proposed caching scheme can
effectively reduce the average download time compared to the one without caching
scheme. For the experimental test, we implement CFR on Taiwan UniGrid [25].
Different region configurations are implemented and the top 10 download files from
the SourceForge site are used as the test data set. The experimental result shows that
the downloading time of the 4-region configuration is almost 3 times faster than that
of the 1-region configuration, that is, the region concept of CFR can enhance the
performance of file downloading.

The remainder of this paper is organized as follows. In Section 2, we discuss
various systems that are related to our system. In Section 3 we briefly describe the
system overview of our CFR. In Sections 4 and 5, we introduce the overlay
management and file management of CFR, respectively. The simulation results are
presented in Section 6. In Section 7, we perform the experimental test on Taiwan
UniGrid.

2 Related Work

Many peer-to-peer data storage systems have been proposed in the past, and there
are quite a few papers on comparisons of various peer-to-peer file sharing/storage
applications published [6] [7]. CFS [2] is a Unix-style read only file system layered
on top of the Chord [22] [23] protocol. A DHash layer lies between the file system
and Chord to handle block management. OceanStore [10] is a persistent wide-area
transactional storage, layered on top of its own probabilistic routing protocol.
OceanStore applies erasure coding to files, splitting them into multiple blocks, to
achieve robustness. PAST [18] is a large scale persistent storage system layered on

the Pastry [19] protocol. PAST can be layered on other routing protocols with some
loss of locality and fault resilience properties. All of the storage systems mentioned
above create replicas to the files or blocks stored in the system and employ caching.
IVY [15] is a log-based file system that supports concurrent write operations. VY,
like CFS, uses Dhash to store the logs. Kelips [4] is a file system layered on its own
routing scheme with O(1) lookup time. The fast lookup, however, comes at the cost
of larger memory usage and background communication overhead.

CFR shares many similarities with PAST. Like PAST, CFR stores and replicates
whole files, and is not bounded to a specific routing scheme. Unlike PAST, we do
not rely on the underlying routing protocol to take locality into consideration. Our
system partitions the participating nodes into groups, like Kelips, but uses different
partition scheme. Kelips uses hashing to determine the group of a node while ours is
based on geographic locality.

Many past works have proposed different ideas of using hierarchical multiple ring
topologies in overlay networks. HIERAS [26] and [14] are both routing schemes
that adopt this topology. In [14], the participating peers are organized into multiple
layers of rings with separate identifier spaces to reflect administrative domains and
connectivity constraints. Boundary Chord [8] is a replica location mechanism used
in grid environments. Boundary Chord adopts a two-layer multiple ring topology to
group nodes according to logical domains. In comparison with these systems, CFR
adopts a two-layer hierarchy of multiple rings.

3 System Overview

Figure 1 shows the system architecture of CFR and the functions offered by the
system components. The CFR system consists of two modules: Overlay
Management Module (OMM) and File Management Module (FMM).

CFR System Architecture

File Management Module (FMM)

User Interface Component (UIC)

(put 1 del 1 get)

File Duplication Component (FDC)

[getPermsI getTransI putReplicaIpulTransientI remnveReplica]

Overlay Management Module (OMM)

Region Overlay Management Component (ROMC)

[getRegionTableEntry]

Base Overlay Management Component (BOMC)

[cheighburI ccheighborI]ocateStorageNodeI slabilization]

Figure 1. The system architecture of CFR.

OMM is responsible for maintaining connectivity between the participating storage
nodes using a two-layer overlay network. The two-layer overlay network consists of

two overlays, the base overlay and the region overlay. These two overlays are
maintained by the Base Overlay Management Component (BOMC) and Region
Overlay Management Component (ROMC), respectively. ROMC maintains the
required routing information in a data structure called the region table.

FMM is used for providing functions that are related to files in CFR. FMM
consists of two components: the User Interface Component (UIC) and the File
Duplication Component (FDC). UIC provides an interface for users to access the files
which are stored in CFR. Duplications of files in CFR are automatically created in
order to enhance performance and increase availability. The File Duplication
Component (FDC) is responsible for creating the duplications.

4 The Overlay Management of CFR

In this section, we will describe the overlay management of CFR. It can be divided
into the base overlay and the region overlay.

4.1 The Base Overlay

The purpose of the base overlay is to route messages between any two storage
nodes in the system. The base overlay is constructed and maintained by BOMC. In
the base overlay, each participating storage node has a node ID that is obtained by
hashing the IP address of the node using a consistent hash function, such as SHA-1 [3]
or MD5 [17]. Using this method, participating storage nodes are organized as a ring,
the base ring, according to their IDs.

4.2 The Region Overlay

4.2.1 Regions

The basic concept of region is inspired by mirroring scheme on the internet such as
SourceForge. User usually can choose a server to download file according to their
own geographic locality to achieve efficient downloading. Therefore, the geographic
locality can be interpreted as network locality in two end hosts connected to the
Internet. In [24], it is shown that topology of the Internet today obeys the Power
Law and consists of several dense autonomous system clusters.

We adopt a model to capture the scenario that we mentioned above. We assume
that the connection between two participants (storage nodes or users) of CFR is
efficient if they are in the same geographic area. In our model, all storage nodes and
users, both end hosts in the Internet, are partitioned into disjoint sets called regions.
We assume that the partition reflects geographic locality.

4.2.2 Construct and Maintain the Region Overlay

Constructing the region overlay can allow the participating storage nodes to
contact other storage nodes that are in different regions quickly. This ability aids the
file duplication procedures to select target storage nodes to replicate desired files.
Details of the file duplication procedures are described in Section 5.

@ . The Region Overlay Before Storage Node 10 Joins

N
R E

Region Ring

i Region Ring vy
0 @ @@

The Base Overlay Afier Storage Node 10 Joins

O Storage Node Local Link ~ — — Contact Link O Storage Node Local Link ~ — — Contact Link

Figure 2. (a). An example of region overlay with 3 regions. (b). An example of the join process.

We now describe the construction and maintenance procedures of ROMC. First we
will introduce some terms and variables that will be used. R denotes the total number
of regions in the system. Nodes that belong to the same region are called locals of
each other. Nodes that belong to different regions are called contacts of each other.
A link is an ID-to-address mapping, used to convert node ID to actual network
address. Links that point to locals are called local links. Links that point to contacts
are called contact links. Links that are required to form the region overlay which are
stored in the region table of the participating nodes.

To form the region overlay, each node stores and maintains R links in their region
tables. The local links in the region table of each node connect nodes from the same
region into a ring, called the region ring. The region overlay is essentially made up of
R interconnected region rings. Figure 2(a) shows a system with 3 regions. Storage
node 9 stores and maintains 3 links in its region table. A local link points to the
clockwise neighbor in its region ring, node 13. Two contact links point to the closest
contacts from the remaining two regions in the base ring, nodes 11 and 22,
respectively.

A node constructs its region table when it first joins the system, and maintains its
region table throughout its lifetime in the system.

Figure 2(b) shows an example of the join process. In Figure 2(b), storage node 10
joins the system. As shown on top of Figure 2(b) all storage nodes between storage
node 9 and storage node 67 have a link to storage node 22 before storage node 10
joins. The region table of storage node 9 contains links to storage nodes 11, 13, and
22. After storage node 10 joins, all nodes between storage node 9 and storage 67 are
affected. As shown on the bottom of Figure 2(b), the region table of storage node 10

contains links to storage nodes 11, 13, and 22. These links are obtained from storage
node 9. All the links that point to storage node 22 are modified to point to storage
node 9.

5 The File Management of CFR

In this section, we give detailed descriptions of file management procedures in
CFR. Files that are stored in CFR can be classified into two types: permanent file, and
transient file. Permanent file will stay in the system until a remove operation is
performed on it. Each transient file has a lifetime to determine how long it can stay in
the system, and will be removed from the system when the system time exceeds its
lifetime. A permanent file is associated with a data structure called permanent table,
which contains all the necessary file management information about a permanent file.
Likewise, a transient file is associated with a transient table which contains the
necessary information about a transient file. The storage space of each storage node is
divided into to two areas: local and cache areas. Permanent files are stored in the
local areas of storage nodes, and transient files are stored in the cache areas.

Table 1. An example of a permanent table

filename App.tgz Table 2. An example of a transient table
(lelD 8 filename App.tgz
permNodes | 8 | 11 [22 : pp.19
fileID 8
caches 24 | 50 =
lifetime 50000
hort 359
long 50 path lopt/cfricache
path /opt/cfr/local

Table 1 shows a permanent table. The filename and the filelD field record the
name of the file and the hash value of the filename. Each file will be replicated, and
the permNodes field records the storage nodes in different regions that store the
replicas when the caches field records the storage nodes in the same region that store
the replicas. The long and short fields record the long term and short term access rates
of that file, respectively. The path field stores the physical location of the file. Table 2
shows a transient table. The filename, filelD, and path fields are the same as the fields
in the permanent table. The lifetime field stores the lifetime of that transient file.

5.1 Insert Files and Create Duplicates in CFR

The put function provides by UIC allows users to insert files into CFR. In CFR, a
file will first be put to the node, n;, whose id is closest to fileID. After the first stage
of insertion is completed, node n; will replicate files to nodes in other regions
according to its contact link information.

Transient files are created for reducing the load of the storage nodes hosting
popular files as proposed in [12]. In order to cope with this phenomenon, we record

the long term download rate, in the scale of days, of each file in the long field of its
permanent tables. The transient file will be created when one of the download rates of
that file exceeds its threshold.

Figure 3(a) shows an example of file insertion and duplication process. The file
App.tgz, which is the same file in Table 1, is inserted into a system with 3 regions.
Since the filelD of App.tz is 8, its home is storage node 9. Storage node 9 uses its
region table to create two replicas on storage nodes 11 and 22 according to the
described creation procedure.

@» Region B

N
- o g BB
. \) .
OStorageI\ode Local Link ~ — — Contact Link Dl-‘ilc o -
(@) (b)

Figure 3. (a). An example of file insertion and duplication. (b). An example of file retrieval.

5.2 Retrieve and Remove Files in CFR

The get function provided by UIC allows users to retrieve files from CFR. To
retrieve a file f; from CFR, a user u; first finds the home of fj, n,. After n, is found, u;
invokes the getPerms function on nj, to find the list of storage nodes that stores f; as a
permanent file, and selects the storage node that belongs to the same region as herself.
Let this storage node be n,. u; invokes the getTrans function on n, to obtain the list of
caches of fj. u; then chooses a storage node from all the caches and n, with equal
probability. This will evenly distribute the requests among all the storage nodes that
stores f; or transient file of f; in the same region.

The remove operation is similar to the get operation. A user first invokes the del
function on the home of a file, ny.. n, then finds all the storage nodes that store replicas
and transient file of that file from the permanent tables, and issues requests to remove
the files from their storage space. Figure 3(b) shows an example of the file retrieval
process.

5.3 Dealing with Storage Node Dynamics

To ensure users can always locate their desired files, dynamic storage nodes must
be considered. The addition of new storage nodes and the departure of existing
storage nodes will cause files to migrate to different homes. If no corresponding
actions are taken, future requests will be routed to their new homes and dropped

because the new homes are unaware of their existence. However, migration of all files
from one storage node to another will be very costly especially when the total size of
files is large. We use redirection to deal with these problems. A storage node can store
only the permanent table of a file and records a link to the storage node that store the
actual file. This link is called a reference. References are created by storing links
instead of local paths in the path field of permanent tables.

A joining or leaving storage node will affect its clockwise neighbor in the base ring.
It will also affect the nodes between itself and the closest counter-clockwise storage
node in its region. In the case of join and voluntary departure, the affected nodes will
be notified. The affected nodes will first create references to deal with the change of
topology, and schedule physical file migration to be done in the future.

6 Simulation Results

To evaluate CFR, we implemented a simulator and performed several experiments
to further understand its behavior. All simulations were run on an IBM eServer,
equipped with two Intel(R) Xeon(TM) 2.40GHz CPUs and 1GB of memory. The OS
running on the eServer is Debian. The kernel version is 2.6.

6.1 Expected Number of Hops to Collect All Links

The objective of this experiment is to compare the average number of hops[13] to
obtain a complete set of R links to the derived expected number of hops. We would
also like to verify that the minimal average value appears when the population of
storage nodes in all regions is equal. We only show the results with two and three
regions. When the number of regions is larger than three, it is difficult to present the
results using graphs. However, all results show similar characteristics.

11
10 HLJT] M
o H H
s H H
@ Expected Value
7 B 1000 Nodes
6 M) 10000 Nodes
s H O 100000 Nodes
4 H H
>l ﬂﬂﬂ]]]]m]ﬂﬂt I
5 U . . . | 1]
0.1 0.2 03 04 05 06 0.7 08 009

Figure 4. Average number of hops and the expected number of hops to obtain all links in a
system consisting of two regions and different number of storage nodes.

Figure 4 shows the average number of hops in a system with two regions, with
different node proportions and storage node populations. The x-axis is the proportion
of the first region. We can see that all results are close to the expected value. Note that
the larger storage node population, the closer the average is to the derived value. This

is because the distribution of nodes over the identifier space is more uniform as the
number of nodes increase. Also note that the lowest expected value and average
values occur at the point where the proportions of the nodes are equal (0.5), which
concurs with our derived result.

6.2 Evaluation of File Management of CFR

The objective of next experiments is to evaluate the proposed replication strategy
and to compare the proposed strategy to PAST. The reason PAST is chosen is because
it shares most similarity with CFR. We use the download statistics from the “top 100
downloaded projects in 7 days” web page available from the SourceForge website.

Using this data, we simulated our replication strategy and compare it with the
replication strategy of PAST. The system consists of five hundred nodes. The average
download time of around 45000 downloads with varying number of replicas created
for each file inserted in both CFR and PAST, are shown in Figure 5(a). As shown in
the figure, download time decreases as the number of replicas created for both
systems. We can see that CFR achieves lower average download time than PAST
using the same number of replicas.

50000

40000

= =
= - [... = | £ 30000 @ Transients
= v =
z - PAST S 20000 B No Transients
i = L LLE|
: i B e 10000

S A A DD DS

F S S N

mber of replicas Download Time
(@) (b)

Figure 5. (a) The average download time of CFR versus PAST with different number of
replicas. (b). Comparisons the transfer time between with transient files and without transient
files

Next we evaluate the effect of creating transients on performance. In this
experiment, the setup is identical to the previous experiment. The result of the
experiment shows that the average download time is reduced to about one half when
transients are created. Figure 5(b) shows the comparisons the transfer time between
with transient files and without transient files.

As shown in Figure 5(b), the use of transient files effectively reduces transfer time.
With transient files, it has greatly reduced download time.

7 Experimental Results

To evaluate the real performance of CFR, we have implemented the CFR system
on Taiwan UniGrid [25]. The Taiwan UniGrid is a Grid platform for researchers in

Taiwan to do Grid related research. Currently, the platform contains about 30 sites.
We execute the CFR program on 12 sites in 4 cities of Taiwan as shown in Figure
6(a). Each site has 3 storage nodes. We select the top 10 download files, as shown
in Table 3, from the sourceforge.net [21] as our test data. To measure the performance
of CFR, we have 4 region configurations, 1, 2, 3, and 4, for these 12 sites. For the 1-
region configuration, all sites form a region. For the 2-region configuration, sites in
{Taipei, Hsinchu} and {Tainan, Kaoshiung} form a region, respectively. For the 3-
region configuration, sites in {Taipei}, {Hsinchu}, and {Tainan, Kaoshiung} form a
region, respectively. For the 4-region configuration, sites in each city form a region.
For each region configuration, a download program is executed in each site to
randomly decide whether a client needs to download a particular program or not.

Table 3. Top 10 downloads from sourcesforge.net

Filename Size (bytes)
7-Zip_Portable_4.42 R2.paf.exe 1193218
7z443.exe 862846

aresregular195 installer.exe 1253674
audacity-win-1.2.6.exe 2228534
Azureus_2.5.0.0 Win32.setup.exe 8799656
DCPIlusPlus-0.698.exe 3836577
eMule0.47c-Installer.exe 3534076
eMulePlus-1.2a.Binary.zip 3047952
gimp-2.3.12-i586-setup.zip 14267302
Shareaza 2.2.3.0.exe 4366779

Taipei

450
400
350
300
250 |
200
150 [
100

Kaohsiung 50
NUK 0

NTHU NCH

Tainan

NUTN

Downloading Time (sec)

w W

CIU HKU

& e 1 2 3 4

NSYSU KPPRS

Region Number

(@) (b)

Figure 6. (a) Testbed map of CFR in TANET of Taiwan. (b) The average downloading time
against region number.

Figure 6(b) shows the average downloading time against the region number. From
Figure 6(b), we observe that the overall downloading time goes down while the
number of regions increases. Since the region partitioning exploits the geographical
relationships of sites, the experimental result also shows that the downloading time of

the 4-region configuration is almost 3 times faster than that of the 1-region
configuration.

8 Conclusions and Future Work

In this paper, we have proposed a scalable, loosely coupled, and efficient storage
system, Cooperative File Repository (CFR), for large scale collaboration projects. The
main concept of CFR is to use peer-to-peer techniques to achieve scalability, use a
two-layer hierarchy managing participating organizations to eliminate centralized
administration authority, and use the geographic locality of the storage nodes and
caching mechanism to achieve the efficiency. The simulation and experimental results
confirm that CFR can achieve those goals mentioned above.

From the simulation results, we observe that the CFR can produce the best
performance when all regions have the same number of storage nodes. In real
situation, the number of storage nodes of regions may not be equal. How to
dynamically combine small regions to one larger region or split one larger region to
small regions such that each region has approximate the same number of storages
node to keep CFR remain efficient is an important issue for the future study.

Acknowledgement

The work of this paper is partially supported by National Science Council,
National Center for High-Performance Computing of the Republic of China under
contract NSC 95-2752-E-007-004-PAE, NSC 94-2218-E-007-057, and NCHC-
KING_010200.

References

[y

. China Grid, http://www.chinagrid.net

2. F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and |. Stoica, “Wide-area Cooperative
Storage with CFS,” in the Proceedings of 18" ACM Symposium on Operating Systems
Principles, Oct. 2001, pp. 202-215.

3. FIPS 180-1, Secure Hash Standard, U.S. Department of Commerce/NIST, National
Technical Information Service, Springfield, VA, Apr. 1995.

4. 1. Gupta, K. Birman, P. Linga, A. Derms, and R. van Renessie, “Kelips: Building and
Efficient and Stable P2P DHT through Increased Memory and Background Overhead,” in
the Proceedings of the 2" International Workshop on Peer-to-Peer Systems (IPTPS *03).

5. grid.org, http://www.grid.org/home.htm

6. R. Hasan, Z. Anwar, W. Yurcik, L. Brumbaugh, and R. Campbell, “A Survey of Peer-to-Peer

Storage Techniques for Distributed File Systems,” in the Proceedings of International

Conference on Information Technology: Coding and Computing, Apr. 4-6, 2005, vol: 2, pp.

205-213.

7. H. C. Hsiao and C. T. King, “Modeling and Evaluating Peer-to-Peer Storage Architecture,”
in the Proceedings of International Parallel and Distributed Processing Symposium, Apr.
14-19, 2002, pp. 24-29.

8. H. Jin, C. H., and H. Chen,” Boundary Chord: A Novel Peer-to-Peer Algorithm for Replica
Location Mechanism in Grid Environment,” in the Proceedings of the 8" International
Symposium on Parallel Architectures, Algorithms, and Networks (ISPAN 2005), Dec. 2005,
Las Vegas.

9. Kazaa. http://www.kazaa.com

10. J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S.
Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, “Oceanstore: An Architecture
for Global-Scale Persistent Storage,” in the Proceedings of 9" International Conference on
Architectural Support for Programming Languages and Operating Systems, Nov. 2000.

11. LCG, http://Icg.web.cern.ch/LCG/

12. N. Leibowitz, M. Ripeanu, and A. Wierzbicki, “Deconstructing the Kazaa Network,” in the
Proceedings of 3rd IEEE Workshop on Internet Applications, Jun. 2003.

13. M. R. Lin, “CFR: A Peer-to-Peer Collaborative File Repository System,” National Tsing
Hua University, Dept. of Computer Science, Master Thesis, Taiwan, 2006.

14. A. Mislove, and P. Druschel, “Providing Administrative Control and Autonomy in
Structured Peer-to-Peer Overlays,” in the Proceedings of International Workshop on Peer-
to-peer Systems, Feb. 2004.

15. A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen, “lvy: A Read/Write Peer-to-Peer
File System,” in the Proceedings of International 5th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Dec. 2002.

16. Napster, http://www.napster.com

17. R. Rivest, "Message Digest Algorithm MD5", RFC 1321, Apr. 1992.

18. A. Rowstron and P. Druschel, “Storage Management and Caching In PAST, a Large-Scale,
Persistent Peer-to-Peer Storage Utility,” in the Proceedings of 18" Symposium On
Operating Systems Principles (SOSP "01), Oct. 2001.

19. A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object Location and Routing
for Large-Scale Peer-to-Peer Systems,” in the Proceedings of 18" IFIP/ACM International
Conference on Distributed Systems Platforms, Nov. 2001, pp.329-350.

20. SEEK, http://seek.ecoinformatics.com

21. SourceForge.net, http://sourceforge.net

22. 1. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan, “Chord: A Scalable
Peertopeer Lookup Service for Internet Applications,” in the Proceedings of conference on
Applications, technologies, architectures, and protocols for computer communications
SIGCOMM '01, 2001, Volume 31, Issue 4, pp. 149-160.

23. |. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek, F. Dabek, H.
Balakrishnan, “Chord: a scalable peer-to-peer lookup protocol for Internet applications,” in
the IEEE/ACM Transactions on Networking, Feb. 2003, Volume 11, Issue 1, pp. 17-32.

24. G. Sagie and A. Wool, “A clustering approach for exploring the Internet structure,” in the
Proceedings of conference on 23rd IEEE Convention of Electrical & Electronics Engineers,
Sep. 2004.

25. Taiwan UniGrid, http://www.unigrid.org.tw/

26. Z. Xu, R. Min, and Y. Hu, “HIERAS: A DHT Based Hierarchical P2P Routing Algorithm,”
in the Proceedings of International Conference on Parallel Processing, Oct. 2003.

