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Abstract — In [5], we have proposed a compile-time
optimization approach, the bottom—up top-down dupli-
cation heuristic (BTDH), for static scheduling of
directed-acyclic graphs (DAGs) on distributed memory
multiprocessors (DMMs). In this paper, we discuss the
applications of BTDH for list scheduling algorithms
(LSAs). There are two ways to use BTDH for LSAs. (1)
BTDH can be used with a LS A to form a new scheduling
algorithm (LSA/BTDH). (2) Itcan be used as a pure opti-
mization algorithm for a LSA (LSA-BTDH). We have
applied BTDH with two well known LSAs, the highest
level first with estimated time (HLFET) and the earlier
task first (ETF) heuristics. We have performed extensive
simulation to study the performance of BTDH for LSAs.
Three parameters, graph parallelism (GP) of a DAG
[19], the ratio of average communication cost to average
computation cost (CCR) of a DAG [5], and the processor
number (PN) of a DMM, are simulated. From the simula-
tion, we have the following conclusions. (I) Given a
DAG, the GP of the DAG can accurately ict the num-
ber of processors to be used such that a good scheduling
length and a good resource utilization (or efficiency) can
beachieved simultaneously. (II) Interms of speedups, we
have LSA/BTDH = LSA-BTDH 2 ETF > HLFET. Ex-
perimental results of scheduling FFT ?rograms, which
are written in Single Program Multiple Data (SPMD)
programming approach, on NCUBE-2 are also pres-
ented. The results confirm our simulation results and
show that the speedups of LSA/BTDH and LSA-BTDH
are better than the speedups of LSAs.

1. Introduction

The main purpose of using parallel computers is to
reduce the execution time of application programs. Opti-
mal execution of application programs on parallel
computers depends on the methods of partitioning an
application program into tasks (the partitioning problem)
and scheduling tasks on a parallel computer (the schedul-
ing problem). The main aspects of the partitioning
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problem are (1) how to partition an application program
1nto tasks while exploin}r,l?gs much parallelism as possi-
ble; (2) how to determine the size of tasks (grain size)
such that a better scheduling length can be produced by
ascheduling algorithm. Once anapplicationprogram has
been partitioned, it can be represented, in general, by a di-
rected-acyclic graph (DAG). In a DAG, nodes denote
tasks and an arc from node u to node v represents the data
dependency between the two nodes, i.e. node v can notbe
executed until the execution of node # has been com-
pleted. Weights are associated with nodes and arcs to
represent the computation cost (p ional to the time
to execute the task) and the communication cost (propor-
tional to the number of message units to be transferred),
respectively.- The scheduling problem is to assign tasks
of a DAG to processors of a parallel computer such that
the execution time of a DAG is minjmized. This problem
is aésl;)) known as the mudtiprocessor scheduling problem
(MSP).

Ithasbeen shown thatan algorithm for solving MSP
fallsinto the class of NP-complete problems [33]. There-
fore, many heuristic a hes are used to find
satisfactory sub-optimal solutions [1}-[32]. The most
well known approach for MSP is the list scheduling
algorithm (LSA) [22] [23] [25]). The underlying assump-
tion of LSA is that the interprocessor communication
overhead of a computing system, such as processor com-
munication or memory contention, is negligible. Under
thisassumption, LS A can produce near optimal solutions
formost instances. However, this assumption is not valid
for distributed memory multiprocessors (DMMs) where
in r communication overhead is an important
factor of system performance and is typically not negligi-
ble. In fact, LSA is a load balancing heuristic. It tries to
distribute computation load to processors as evenly as
possible and does not consider the communication over-
head. It has;been shown that LSA algorithms produce
poor scheduling results when in| communica-
tion overhead is not negligible [3] [11]. Therefore, many
approaches have been for MSP with interpro-
cessor communication overhead [1]-{21].

In [5], we have proposed a compile-time optimiza-

tion approach, bottom-up top—down duplication
heuristic (BTDH), for stat%xg scheduling of DAGs on

DMMs. The underlying concept of BTDH is properly
duplicating some tasks on processors such that the earli-
est start time of tasks on processors can be reduced.
Therefore, a better scheduling length can be achieved. In



[5], we also compared BTDH with another task duplica-
tion heuristic DSH [11]. The major drawback of DSH is
that, when a task 7,, is scheduled on a processor Py, the du-
plication process is applied only to those predecessors
(will be defined in Section 2) which can be inserted in the
idle time slot between the finish time of the task in front
of T, and the earliest start time of T,; and do not increase
the earliest start time of T,,. Itis possible that the insertion
of some of the predecessors of 7,, will increase the earliest
start time of T, at a particular stage of the duplication pro-
cess. But, the insertion of those predecessors will
eventually decrease the earliest start time of T, at a later
stage of the duplication process. To overcome the draw-
back of DSH, BTDH allows the duplication of a
predecessor T; of a task T, even thought the duplication
of T; in front of T, will increase the earliest start time of
T,,. The simulation results in [5] show that BTDH outper-
forms DSH, especially when the ratio of the average
communication cost to the average computation cost is
large.

In this paper, we will discuss the applications of
BTDH for LSAs. There are two ways to use BTDH for
LSAs. (1) BTDH can be used with a LSA to form a new
scheduling algorithm (LSA/BTDH). (2) It can be used as
a pure optimization algorithm for a LSA (LSA-BTDH).
We have applied BTDH with two well known LSAs, the
highest level first with estimated time (HLFET) [22] and
the earliest task first (ETF) heuristics [8]. We have per-
formed extensive simulation to study the performance of
BTDH for LSAs. Three parameters, graph parallelism
(GP) of a DAG [19], the ratio of average communication
cost to average computation cost (CCR) of a DAG [5],
and the processor number (PN) of a DMM, are simulated.
From the performance analysis, we have the following
conclusions. (I) Given a DAG, the GP of the DAG can
accurately predict the number of processors to be used
such that a good scheduling length and a good resource
utilization (or efficiency) can be achieved simultaneous-
ly. (II) In terms of makespans, we have LSA/BTDH 2>
LSA-BTDH 2 ETF > HLFET. Experimental results of
scheduling FFT programs, which are written in Single
Program Multiple Data (SPMD) programming ap-
proach, on NCUBE-2 are aiso presented. The results
confirm our simulation results and show that the speed-
ups of LSA/BTDH and LSA-BTDH are better than the
speedups of LSAs.

In Section 2, the computational and the architectur-
al models used in this paper are described. The
optimization approach BTDH will be described briefly in
Section 3. In Section 4, applications of BTDH for LSAs
will be described in detail. The performance analysis of
BTDH for LS As will be given in Section 5 by using simu-
lation approach. In Section 6, experimental results by
using LSAs with BTDH to schedule FFT programs on
NCUBE-2 are presented.

2. The Computational and the Architectural
Models

In this paper, we consider scheduling of static (the
number of tasks of a DAG is fixed during the execution),
non-preempted (the execution of a task can not be inter-
rupted once it starts), with communication delay
(interprocessor communication overhead is not negligi-
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ble), and duplicated (a task may have several copies on
processors) MSP ona DMM. An application program is
modeled as a directed—acyclic graph (DAG) G = {T, A},
where T= {T, T3, ..., T} isasetof n tasks and A is a set
of arcs between tasks which define a partial order or pre-
cedence constrain (<) on T such that arc a;; directed from
task 7; into task 7; implies that T; must precede T; (7; < Tj)
in execution. In timis paper, we do not address the issue of
partitioning anapplication program intoa DAG. Howev-
er, for the experimental results shown in Section 6, we
will briefly describe how to partition and transform an
application program intoa DAG. Every task T;inaDAG
is associated with a positive number, denoted by p(T;),
which represents the computation cost of task 7;. Every
arc a;; is also associated with a positive number, denoted
by n(T;, T;), which represents the number of message
units sent {rom task T; to task 7;. T; isa predecessor of T;
and T; is a successor of T; if there exists a path from 7; to
T;. Tiis animmediate predecessor of Tj and T} is an imme-
d’iate successor of T; if there is an arc directed from T; to
T;. A task without immediate predecessors is called a
source task and a task without immediate successors is
called a sink task.

An example of a DAG is shown in Figure 2. In
Figure 2, the underlined number represents the computa-
tion cost of a task and the italic number beside an arc a;
denotes the number of message units sent from task 7; to
task 7;. For example, the computation cost of T is equal
10 6, i.e., W(Ts) = 6 and the number of message units sent
from task T4 to T7 is equal to 10, i.e., (T4, T7) = 10. T},
T, and T are predecessors of Tg and T3 is an immediate
predecessorof Ts. T is a source task and T, T9, T10, and
Ty are sink tasks.

Inadistributed memory multiprocessor, a processor
communicates with other processors through message—
passing. To characterize a DMM, a parameter 1(P;, Pj) is
introduced to represent the time to transfer a message unit
from processor P; to P;. For real cases, especially for
small size of problems, the setup time between two pro-
cessors may have some effect on the makespans of
scheduling algorithms. However, in our simulation mod-
el, we assume that the setup time is much smaller than the
time to transfer a message unit from one processor to
another. Therefore, it is negligible. A DMM is then de-
fined as § = (P, 1), where P = (Py, P, ..., P} isaset of
m processors. By varying the values of t(P;, P;), the ar-
chitectural model can be used to model severaf types of
networks such as a fully connected network, a local area
network, or a hypercube. We make the following as-
sumptions regarding the functions of our architectural
model.

1. Every processor in a DMM is identical.

2. The intra—processor communication overhead is
negligible, i.e., ©(P;, P;) = 0.

; 3. The communication subsystem is contention
Tee.

4. A processor can send messages to some or all pro-
cessors in a DMM simultaneously.

5. The system overhead, such as initialization of a
send communication primitive, is negligible.

Inreal machine, such asthe NCUBE-2 on which we
present some ‘experimental results, some of the above as-
sumptions may not be valid. Assumption 2 is a realistic



algorithm BTDH(T,,, Py)
z { time = e(T,, P,). revious(Ty, Py), Tend = Tn, weight =0.
‘3;. ulle time = e(Tong, P “’5’- top» Px)-
. loop
5. {#(@T; e O(T,.,l’,)) and (7; is not scheduled on Py))
6. then { Duplicate T; in front of T,, on P;.
7. Recompute the earliest start time of tasks from 7; to Tepq On Py.
8. |f(e(T.,4,P,)Se time) then { T, = T;, exit. }
9. weight = ht + W(T;
10. if wgaght< lje amue‘f then T, =T;.
else { Remove all the tasks between T;op and Tepna.
11. &(Tena, Px) = e_time.
12- } Tn = nm(Tefldt Px)r mcomp“"e e(Tm Px)v ex“' ]
13. else if (T, # T,nq) then T, = next(T,, Py).
else { Remove all the tasks between Tyop and Tepg.
14. e(Tond, Px) = e_time.
15. T, = next(Tonq, Py), recompute e(T,,, Py), exit. }
16. ) forever.
17.  } until (T, = D).
18. return(the earliest start time of the last task scheduled on Py).
end_of algorithm_BTDH
Figure 1 : Algorithm BTDH...

assumption as the cost of transferring something within
a processor is equivalent to data copying (or changing of
a few pointers). This cost is negligible as compared to
sending m\ s across the network.

Assumption 3 is useful for estimating the cost of
sending amessage from one processor toanother without
taking into account the contention due to other messages.
This assu:txlnlfuon is a good approximation for most archi-

the maximal bandwidth required by a
problem is much less than the total available bandwidth.

Assumptions 4 and 5 are necessary for the reduction
of time complexity of our mapping algorithms. This is
because if the system overhead (the setup time before a
non-blocking send is retumed) is considered then the
scheduling algorithms need to take into account which
messageneeds tobe sent first (incase a task has outdegree
greater than 1). Such adecision increases the complexity
of the algorithm. By ignoring the system overhead, As-
sumption 4 is automatically true for architectures which
support non-blocking send (such as NCUBE-2). Fur-
ther, if the grain size of the problem is such that the CCR
is large or the grain size of communication is large (i.c.,
the number of bytes per message is large), then the system
overhead does not play a major role. Our experimental
results on NCUBE-2 show that our heuristics behave
close to (and highly correlated to) the simulation results
(which does not include the system overhead) and pro-
duce very good mappings.

3. BTDH

In the following, we briefly describe BTDH (for de-
tail, see [5]). Lete(7,, P,) be the earliest start time of task
T, on processor Py, (T, Py) be the finish time of task 7,
on processor Py, previous(T,, Py) be the task which will
be executed right before the execution of task 7, on pro-
cessor Py, next(T,, Py) be the task which will be executed
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right after the execution of task 7, on processor Py, and
0(T,, Py) be the set of immediate predecessors of task T,
(T,l isscheduledon prooessorl’,) such that for every task
T, in &(T,,, Px) and T, is scheduled on processors Py, the
egrheststanume off on P, isequal to the sum of the fin-
ishtime of T, and the time of sending messages of T, from
PrtoPy,ie., e(TnJ’x) =RTp,Pe)+t(Pr, Px) X'I(Tp. Tn).
ume thata task 7, is scheduled on a processor P,
Ty is thc last task scheduled on P, at this moment)
BTDH tries to minimize the earliest start time of T, on Py,
by duplicating predecessors of T, on the critical path (or
paths) from the source. A highleveldescription of the al-
gorithm is given in Figure 1.

Tend (on Py) represents the task for which the earli-
est start time- is being considered for possible reduction
(loop between lines 4 — 16). T,,, represents the task
scheduled on P, before T,pg. 'I'hls glves the window of
size of e_time (e(Tond,Px) —f(T,,, ,Py)) in which tasks can
be potentially replicated flmestorephcanetasks
on the critical path even though the earliest start time of
the T,,4 may increase (temporary) till the tasks keep fit-
ting this window. There are three ways to exit this loop.

Case 1: The duplication of a predecessor of T,, may
lsead to the reducuon of the earliest start time of T,M (line

Case2: The duplication of a predecessor of T, over-
flows the window (line 10 else part).
Case 3 : The duplication has not shown any reduc-
tion of e(T,,.,,, Py) (line 13 else part).
In Case 2 and Case 3, the duplicated tasks between
Tigp_ and T,pq are removed and algorithm proceeds to
minimize the earliest start time of task immediately after
Tena- In the first case, the algorithm proceeds to reduce
the earliest start time of the predecessors. This may even-
tually lead to further reduction of the initial task 7, on
which the duplication heuristic was applied. The com-



plexity of algorithm BTDH is O(r3), where r is the
maximum number of predecessors of any task in a DAG
(see [5D).

4. Applications of BTDH for LSAs

Many list scheduling algorithms have been pro-
posed in the literature [2] [6] [8] [11] [13] [15] [19] [21]
[22][23] [28]1 1291 (311 [32]. In general,aLSA can be de-
scribed as follow:

Algorithm LSA :

Phase 1 : Find the best (task, processor) pair from
the ready to schedule task list (RSTL)
and the available processors list (APL)
according to some cost functions.

Phase 2 : Assign the task to the processor.

Phase 3 : Update the RSTL and the APL.

Phase 4 : Repeat Phase 1 to Phase 3 until all tasks
are scheduled.

Since BTDH is a task duplication heuristic, it canbe
applied to a LSA in two ways:

(1) BTDH is used as a pure optimization algorithm
for a LSA : When BTDH is used as a pure optimization
algorithm, it tries to reduce the earliest start time of each
task on each processor (Note that, in this case, tasks are
already assigned to processors by aLSA before BTDH is
used). In algorithm LSA, only one (task, :?roccssor) pair
is selected whenever Phase 1 to Phase 3 are executed.
‘When all tasks are scheduled on processors, we have a se-
quence of (task, processor) pairs. Since a (task,
processor) pair is selected according to some cost func-
tion at a given time, the sequence of (task, processor)
pairs provides us an order to select tasks for optimization.
The algorithm is given as follows:

Algorithm LSA-BTDH :
Phase 1 : Use algorithm LSA to schedule a DAG on
a DMM and keep the sequence of
(task, processor) pairs in a queue Q.
Phase 2 : Let(7;, Fj) = the first (task, processor) pair
in

Assign T; to P; and apply BTDH to
minimize the earliest start time of T;
on P;.

Delete the pair (T;, P;) from Q.
Repeat Phases 2 — 4 until Q is empty.

Phase 3 :

Phase 4 :
Phase 5 :

Algorithm LSA-BTDH is a generic term. The term
LSA can be substituted by any scheduling algorithm. For
example, if BTDH is used as an optimization algorithm
for HLFET. Then, the scheduling algorithm is HLFET-
BTDH, i.e., BTDH is used for HLFET as an optimization
heuristic.

(2) BTDH is used with a LSA to form a new sched-
uling algorithm : Let (T, Px) be the best (task, processor)
pair found from the RSTL and the APL according to some
cost functions in each execution of Phase 1 to Phase 3 of
algorithm LSA. BTDH can be applied to the pair (7, Py)
toreduce the start time of T,, on P. Since some of the im-
mediate predecessors of T, may be duplicated on some
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other processors in the APL after some tasks are sched-
uled, BTDH is also applied to the pair (T, P ), where Py,
isin the APL and some of the immediate predecessors of
T, are duplicated on P,,. For those (T, processor) pairs
which BTDH is applied, we choose the pair (T, Py) as the
best pair, where e(T},, Py) is the minimum for all proces-
sors BTDH applied. The algorithm is given as follows:

Algorithm LSA/BTDH :

Phase 1 : Find the best (task, processor) pair from
the RSTL and the APL according to
some cost functions. Let the task and
processor be T, and Py, respectively.
Find the set of processors Ay, where for
each P, € Ap, Py is in the APL and
some of the immediate predecessors of
T, are duplicated on P,,.

For each P, € A, U {Py}, apply BTDH
to each pair of (T, P,,) and choose the
pair (T, Py) as the best pair, where

e(Ty, Py) is the minimum for all
processors BTDH applied.

Assign T, to Py.

Update the RSTL and the APL.

Repeat Phase 1 to Phase 5 until all

tasks are scheduled.

Phase 2:

Phase 3 :

Phase 4 :
Phase 5:
Phase 6 :

Algorithm LSA/BTDH is a generic term. The term
LSA can be substituted by any scheduling algorithm. For
example, if BTDH is used with the ETF to form a sched-
uling algorithm. Then, the scheduling algorithm is
ETF/BTDH.

5. Simulation Results

Inthis section, we use simulation approach toevalu-
ate the performance of scheduling algorithms
(Experimental results for some real programs on
NCUBE-2 will be provided in Section 6). There are
many factors such as the graph size, the processor number
(PN), the ratio of the average communication cost to the
average computational cost (CCR), the graph parallelism
(GP) [19] of a DAG, and the topology of a given parallel
machine can affect the makespan of a scheduling algo-
rithm. In this paper, we will focus on the study of the
relationship of CCR, GP, and PN to the scheduling length
or speedup.

In our simulation, we assume that the system over-
head is negligible. Inreal situations, especially for small
size of problems, the system overhead such as the initia-
tion of acommunication primitive may have some effect
on makespans of scheduling algorithms, In this case, as
will be seen in Section 6, the system overhead sometimes
will greatly offset the speedups of scheduling algorithms.
However, the results of relative performance compari-
sons of scheduling algorithms for both simulation and
experimental cases, in general, are identical. For the sim-
ulation, we also assume that the target machine has a
complete interconnection between processors.

We set the values of CCR = {1, 2, 3,4,5,6,7, 8,9,
10,20, 50}, the values of GP = {4, 8, 16,32,64}, and the
values of PN = {4, 8, 16, 32}. For each tuple (CCR, GP,
PN), we randomly generate 10 DAGs as the test samples.



Each DAG has 300 tasks and the difference between the
GP we set and the value of GP of the DAG is+0.5. The
total computation time of a DAG on a single processor is
around 1670 time units.

Let GPP be the ratio of GP to PN, i.e. GPP =GP/
PN. Since the GP is the ratio of the total computation time
of a DAG to the total computation time of tasks on the
critical path of a DAG, it represents the maximal speedup
thatcan be achieved by a scheduling algorithm for agiven
DAG on a DMM. In the following, we will analyze the
perfofnaanlfe of scheduling algorithms based on the val-
ues of GPP.

51GPP<1

GPP < 1 implies that the PN used in a scheduling
algorithm is greater than the GP of a DAG. Makespans
for scheduling algorius)m)with GPP= 03%) a)nd GPP= 0.%5
are shown in Figure 3(a) and Figure , respectively.
From Figure 3, we can see that LSA/BTDH and LSA-
BTDH outperformed LSA for CCR 2 1. When the value
of CCR increased, the difference of makespans between
LSA and LSA/BTDH (or LSA-BTDH) is increased as
well. The makespans of ETF, ETF/BTDH, ETF-BTDH,
HLFET, HLFET/BTDH, and HLFET-BTDH in
Figure 3, have the following order:

(HLFET/BTDH)magespan < (ETF/BTDH)makespan
< (HLFET-BTDH)matespan < (ETF-BTDH)magespan <
(ETF)'rmk:mn < (m-FET)makapan.

where (scheduling algorithm)nakespan is the makespan
for a scheduling algorithm.

Since GPP < 1 implies thatthe PN used inaschedul-
ing algorithm is greater than the GP of a DAG, it is of
interest to see if the makespans for the case where GPP
< 1 are less than the makespans for the case where GPP
= 1. In Figure 4, the speedups for scheduling algorithms
withCCR = (1,2,3,4,5,6,7,8,9,10}, GP =8, and GPP
= {0.25, 0.5, 1} are shown. From Figure 4, we can sce
that, in general, the more processors we used, the better
speedup we can expect from LSA/BTDH and LSA-
BTDH. However, the gain is not proportional to the
number of processors used. For example, in Figure 4(d),
the speedups of HLFET-BTDH for DAGs with CCR =
1and GPP=0.25,0.5,and 1 are 4.71, 5.16, and 5.69, re-
spectively. The ratio of processors usedis 32:16:8=4
:2: 1 and the ratio of speedupsis 5.69:5.17:4.71=1.21
: 1.1: 1. Therefore, GP can accurately predict the number
of processors to be used for a DAG such that a good
scheduling length and a good resource utilization (or effi-
ciency) can be achieved simultaneously.

52GPP=1

GPP = 1 implies that the PN used in a scheduling
algorithm is equal to the GP of a DAG. Since the value
of GP of a DAG is the maximal speedup can be achieved
for ascheduling algorithm, the case where GPP= 1 seems
likely to be the most economical way to use processors.
In Figure 5, makespans for scheduling algorithm with
GPP =1 are shown. From Figure 5, we can see that LSA/
BTDH and LSA-BTDH outperforms LSA for CCR 2 2.
‘When the value of CCR is increased, the difference of
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makespans between LSA and LSA/BTDH (or LSA-
BTDH) is increased as well. The makbsl_gans of HLFET,
ETF, LSA/BTDH, and LSA-BTDH in Figure §, in gen-
eral, have the following order:

(LSA/BTDH)nakespan < (HLFET-BTDH)matespan
< (E'I'F—BTDHMM < (ETF)pmhxpan <
(HLFET)matespan:

where (scheduling algorithm)pgkespan is the makespan
for a scheduling al%orithm. The difference between
HLFET/BTDH and ETF/BTDH is negligible.

53GPP>1

GPP > 1 implies that the PN used in a schedulin,
algorithm is less than the GP of a DAG. In Fi :
makespans for scheduling algorithm with GPP = ﬁlf'f, 8,
16} are shown. From Figure 6, we can see that the make-
spans of ETF are almost the same as those of LSA/BTDH
and LSA-BTDH when CCR < 10 and GPP 24. Thisim-
plies that when GPP is large enough and CCR is less than
athreshold, the makespans of ETF are almost the same as
LSA/BTDH and LSA-BTDH.

5.4 Comparisons of Execution Time of
Scheduling Algorithms

The execution time for each scheduling algorithm
to schedule the test samples on a DMM with complete
connections between processors, on a SUN SPARC-
STATION 2, is given in Table 1. From Table 1, we can
see that the execution time of LSA/BTDH is much higher
than those of LSA-BTDH and LSAs. When the number
of tasks of a DAG is large, the time for LSA/BTDH may
be relatively large. Therefore, LSA/BTDH is suitable for
DAGs with a few tens to a few hundreds of tasks. Since
the execution time of LSA-BTDH is a little higher than
those of LSAs, for DAGs with large number of tasks,
LSA-BTDH, in general, can produce better makespans
than LSAs in a reasonable time.

5.5 Discussion

From the above comparisons, we have the follow-
ing conclusions:

1) Givena DAG, the GP of the DAG can accurately
predict the number of processors to be used such that a
good scheduling length and a better resource utilization
can be achieved simultaneously.

2) BTDH can significantly improve the
of DAGsoverLSA; however, if GPP is very large, BTDH
may improve speedup or scheduling length only slightly.

3) In general, (LSA/BTDH)makespan < (LSA-
BTDH)matespan < (ETF)makespan < (HLFET)makespan,
where (scheduling algorithM)ykespax iS the makespan
for a scheduling algonithm.

4) In terms of time complexity, in general, we have
(LSA/BTDH)in, 2 (LSA-BTDH)ime > (ETF)ime 2
(HLFET)im., where (scheduling algorithm);,, is the
time complexity of a scheduling algorithm.



6. Experimental Results of Scheduling
Algorithms on NCUBE-2

To demonstrate the performance of BTDH for real
programs on an NCUBE-2 parallel machine, the FFT al-
gorithm is implemented. The program is written in C
language by using the Single Program Multiple Data
(SPMD) programming approach. Since the grain size of
aDAG determines the value of CCR, we generate DAGs
withCCR>1,0.5<CCR < 1,and CCR < 0.5 and compare
the performance of scheduling algorithms for each case.

6.1 The performance of Scheduling
Algorithms for FFT

AFFT program, in general, can be described as fol-
lows:

Algorithm FFT(A)
1. n = length (A); /* nis a power of 2 */
2.if Sn = 1) then return(A);
3. YO = FFT(A[O : n-2:2]);
4. YD = FFT(A[1: n-1:2]);
o =eTin =1,
for k=0 to n/2-1 do
{ Y[k = YOU] + o * YOI,
Ylk+n/2] = YO[K] - o * YD[k];
9. O=0%*0, )}
10. return(Y); /* Y is assumed to be column vector */
End_of FFT

5.
6.
7.
8.

where A and Y are arrays, A[0: n-2 : 2] = (A[0], A[2], ...,
A[n-2]},andA[1:n-1:2]={A[1],A[3],...,A[n~1]}. The
behavior of FFT with input vector size = 4 is shown in
Figure 7. InFigure 7, the computation of FFT consists of
two operations, the input vector operation (IVO) (lines 3
and 4 in algorithm FFT) and the butterfly operation (BO)
(lines 5 to 9 in algorithm FFT). Since the grain size of a
DAG determines the value of CCR, to produce the desire
value of CCR we want, array A can be split into a appro-
priate number of subarrays.

The DAG of FFT we used for scheduling algo-
rithms is shown in Figure 8. In Figure 8, we have 2/~ 1
IVO-task, 2! FFT—task, and (J+1) X 2 BO-task, where
>0. For each IVO-task with input vector size =k, itneeds
to send a vector with size = k/2 to its immediate succes-
sors. For each FFT-task or BO—task with input vector
size = k, it needs to send a vector with size = k to its imme-
diate successors. We found out if the number of FFT—task
in Figure 8 is less than or equal to 16 and array A has 1024
elements, we have CCR <(.5. If the number of FFT—task
in Figure 8 is equal to 32 and array A has 1024 elements,
we have 0.5 < CCR < 1. If the number of FFT-task in
Figure 8 is greater than or equal to 64 and array A has
1024 elements, we have CCR > 1. According to the val-
ues of CCR we want, we generate DAGs with different
number of tasks. In the following, the input vector size
of FFT is 1024.

Figure 9 shows the speedups of scheduling algo-
rithms for a DAG G4 with 511 tasks. The values of CCR
and GP of G4 are 1.04 and 14.56, respectively. From
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Figure 9, we can see that the system overhead can greatly
offset the speedups we predict. This is due to the fine
grain nature of the FFT-task and the BO-task (whichrep-
resent majority of the tasks). Further, the amount of
communication send to the FFT-task and the BO-task is
relatively small (i.¢., grain size of the communication is
small and thus the system overhead plays a major role).

Figure 10 shows the speedups of scheduling algo-
rithms for a DAG G5 with 223 tasks. The values of CCR
and GP of Gs are 0.59 and 11.26, respectively. In
Figure 10, the system overhead can offset some of speed-
ups we predict (But, it is not so severe than that of Gs).

Figure 11 shows the speedups of scheduling algo-
rithms for a DAG Gg with 95 tasks. The values of CCR
and GP of Gg are 0.33 and 8.91, respectively. From
Figure 11, we can see that the real speedups are very close
to the predicted speedups. Thus, as the grain size of tasks
and the grain size of communication (i.e., the number of
bytes transferred per message) increases, the effect of
system overhead becomes negligible and the experimen-
tal speedups are close to the speedups provided by the
simulation method (which performs optimization assum-
ing no system overhead).

From Figure 9 to Figure 11, in general, the speed-
ups for scheduling algorithms has the following order:

(LSA/BTDH)cpeedup -2 (LSA_BTDmspezdup 2
(ETF)speedup 2 (HLFET)speedup,

where (scheduling algorithm)gp.qup is the speedup for a
scheduling algorithm. These results show a similar be-
havior pattern as the simulation results (of other graphs)
given in Section 5.

6.2 Discussion

Based on the above experimental results, we have
the following conclusions.

1) The grain size determination has a great impact
for speedups of scheduling algorithms. If a DAG is too
fine, the system overhead will sometimes greatly offset
the speedups of scheduling algorithms. If a DAG is too
coarse, the value of GP may be too small, i.e., too much
parallelism is lost. In our experimental results, the best
speedups of scheduling algorithms on NCUBE-2 are ob-
tained when DAGs with 0.25 < CCR < 0.75 are used.

2) The relative speedups comparisons between dif-
ferent algorithms based on experimental results are
similar to those of simulation results. Neglection of sys-
tem overhead affects measurement of absolute
performance, but not relative performance.

7. Conclusions

In this paper, we have discussed the applications of
BTDH for LSAs. There are two ways to use BTDH for
LSAs. (1) BTDH can be used with aLSA to form a new
scheduling algorithm (LSA/BTDH). (2) Itcan be used as
a pure optimization algorithm for a LSA (LSA-BTDH).
We have applied BTDH with two LSAs, the HLFET and
the ETF, for both applications. We have studied the per-
formance of BTDH for LS As using simulation as well as
on an actual machine. Three parameters, GP, CCR, and



PN, are simulated. From the simulation, we have the fol-
lowing conclusions. (I) GivenaDAG, the GP of the DAG
can accurately predict the number of processors to be
used such that a good scheduling length and a good re-
source utilization (or efficiency) can be achieved
simultaneously. (II) In terms of makespans of scheduling
algorithms, in general, we have (LSA/BTDH)makespan <
(LSA-BTDH)'mImpm s (ETF)makam <
(HLFE'l')m;:?,,,. In terms of the execution time of
scheduling algorithms, in general, we have (LSA/
BTDH)ime = (LSA-BTDH)ime 2 ETF)ime 2
(HLFET)im.. Experimental results of scheduling FFT
programs, whichare written ina SPMD programming ap-
proach, on NCUBE-2 are presented. The results confirm
our simulation results and show that the speedups of
LSA/BTDH and LSA-BTDH are better than those of
LSAs.
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Table 1 : The execution time (in second) of scheduling algorithms for the test samples on 16 processors.

GPP<1 GPP=1 GPP> 1

ETF 0.42-0.59 0.44 — 0.65 0.51 — 1.00
ETF/BTDH 14.50 - 59.15 30.7-93.03 50.36 — 100.38
ETE-BTDH 1.03-3.29 0.82 -2.53 0.74 — 5.47
HLFET 0.11-0.12 0.11-0.11 0.10-0.11
HLFET/BTDH 10.36 - 64.89 6.22 - 55.04 4.19 - 37.06
HLFET-BTDH 1.10-10.88 0.51-9.04 0.27-5.32
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