Extended Abstract

A Parallel Programming Tool for Single Program Multiple Data Model
on Distributed Memory Multiprocessors

Yeh—Ching Chung

Department of Information Engineering
Feng Chia University

Taichung, Taiwan 40724, ROC

T

(04) 252-2250x3714 &
e—mail : ychung@pine.iecs.fcu.edu.tw

Abstract— As both the number of processors and the com-
plexity of problems to be solved increase, programming distrib-
uted me multiprocessors becomes difficult and
error—prone. In a distributed memory multiprocessor, the pro-
gram partitioning and scheduling play an important role for the
performance of a parallel program. However, how to find the
best program partitioning and scheduling so that the best per-

formance of a parallel program on a distributed and memory
multiprocessor can be achieved is not an easy task. In this paper,
we propose a parallel programming tool, PPT, to aid the pro-
grammers to ﬁ};u‘l the best program partitioning and scheduling
and automatically generate the parallel code for the single pro-
gram multiple data (SPMD) model on a distributed memory

multiprocessor.
1. Introduction

Many commercial distributed memory multiprocessors
have been introduced, such as NCUBE-2 [3] and the Connec-
tion Machine 5 (CM-5) [6]. However, it is ndt an easy task to
design a parallel program for a distributed- memory multi-
processor. The choice of the execution model, partitioning a
problem into processes, grouping these processes into tasks, as-
signment of each task to a processor, and insertion of synchroni-
zation primitives for proper execution [7] have to be performed
(manually or automatically). In this paper, we present a parallel
programming tool, PPT, for the SPMD model on a distributed
memory multiprocessor. The goal of PPT is to aid programmers
to design a parallel program that can be run on a distributed
memory multiprocessor efficiently (balanced load and low
communication cost).

2. PPT

The outline of PPT is shown in Figure 1. PPT has six
components: a program partitioning and DAG generator, a
DAG analyzer, a scheduler, a communication analyzer, a code
generator, and a performance evaluator.

The Program Partitioning and the DAG Generator :
To run a program on a distributed memory multiprocessor, the
program must be partitioned into tasks. The se of the pro-
gram partitioning is to determine the grainsize of tasks such that
the best performance of the program on a distributed memory
multiprocessor can be achieved. In general, the finer the grain
size, the higher the parallelism. However, if’a very fine grain
partitioning is used, the communication overhead due to send-
ing data from one processor to other processors may greatly in-
crease the execution time of the program. If a coarse grain
partitioning is used, alot of parallelism available in the program

* The work of this author was supported in part by NSF under
CCR-9110812 and DARPA under contract #DABT63-91-C-0028.
The content of the information does not necessarily reflect the posi-
tion or the policy of the Govemnment and no official endorsement
should be inferred.

0-8186-1060-3425/93 $03.00 © 1993 IEEE

433

Sanjay Ranka*
School of Computer and Information Science
Syracuse University
Syracuse, NY 132444100
(315) 443-4457
e-mail : ranka@top.cis.syr.edu

Program Partitioning
and DAG generator

fio108jsTI8G ON

Figure 1 : The outline of PPT.

may be lost. This would result in a low speedup. Therefore, it
is important to balance the trade—off between the parallelism
and grain size so that a better partitioning can be obtained.

Since PPT is designed for SPMD model, we prefer to use
the modular programming style, in which a program is com-
posed of a set of procedures called by the main program. There
are three advantages by using the modular programming style:

1. The program is easy to design, maintain, and debug.

2. The program partitioning is relatively easy to perform.

3. The DAG can easily be generated from the partitioned
program (manually or automatically).

The programmer is required to partition a program into
tasks. PPT provides a DAG generator for a programmer to gen-
erate the corresponding DAG of the partitioned program in a se-
mi—automatic fashion. If the DAG has a regular structure, the
programmer may write a DAG generator to generate the DAG.
The programmer is also responsible for the attribute table gen-
eration. attribute table stores the information about the cor-
responding procedure that a task is associated with, the
computation cost of each task, the communication cost between
tasks, and the data that must be sent to other processors.

The DAG Analyzer : The DAG analyzer is responsible
for the property analysis of a DAG. The properties of a DAG,
such as the graph parallelism (the ratio of the total computation
time of a DAG to the total computation time of tasks on the criti-
cal path of a DAG) [5] and the ratio of the average communica-
tion cost to the average computational cost (CCR) [2], have
great effect on the makespan of a scheduling algorithm and the

number of processors that can be efficiently used for execution.
For example, if the graph parallelism is equal to 4 and the CCR
is less than 1, using the iughest[le]vc‘:lglrf with estimated time
(HLFET) scheduling algorithm [1] with 4 processors may pro-
duce abetter makespan than using the HLFET scheduling algo-
rithm with 8 processors. Therefore, it is important to study the
relationship between the scheduling algorithms and the proper-
ties of DAGs and embed these properties in the PPT.

In [2], we have performed extensive simulation to study
the relationship between the list scheduling algorithms and the
properties of DAGs. The simulation results show that the graph
parallelism and CCR of a DAG are the most important proper-
ties that have a great effect on the makespan of a scheduling al-
gorithm. Therefore, the DAG analyzer designed in this tool is
responsible for the analysis of the graph parallelism and CCR
ofthe DAG. From the values of the graph parallelism and CCﬂl:.
the ammer can check if the partitioned pro, meets the
reqt%lro;em. Ifitdoesnot, Lhe1:omgrarnmerneedg.l;rg‘1 changethe
partitioning until the desired partitioning is obtained.

The Scheduler : The scheduler is responsible for select-
ing a scheduling algorithm and the number of processors for ex-
ecution (the scheduling algorithm and the number of processors
selection can also be make by the programmer), scheduling the
DAG on the target machine, and ucing a (task, processor)
table and the earliest start time table of tasks on processors.

In the current development, PPT provides six list sched-
uling algorithms, the highest level first with estimated time
(HLFET), HLFET-BTDH [2], HLFET/BTDH [2], the earlier
task first (ETF) [4], ETF-BTDH [2], and ETF/BTDH [2].
HL is a list scheduling algorithm which does not consider
the interprocessor communication overhead, while ETF is alist
scheduling algorithm that takes the in! SOT communica-
tion overhead into account. HLFET-BTDH, HLFET/BTDH,
ETF-BTDH, and ETF/BTDH are list scheduling algorithms
matuseataskdxﬁl:iaﬁmhemisﬁc, BTDH, to optimize the
makespan. For HLFET-BTDH (ETF-BTDH), BTDH is used
as apure optimization heuristic for HLFET (ETF). For HLFET/
BTDH (ETF/BTDH), BTDH is used with HLFET (ETF) to
form a new scheduling algorithm. In [2], we have performed
extensive simulu.it‘)ln to study the r:llanonstupa:twem the effi-
ciency of different list scheduling algorithms and the properties
ofDAsz. A relationship table is constructed to describe the re-
lation between those scheduling algorithms and the ies
of DAGs. According to the output from the DAG analyzer, the
scheduler consults the relationship table to find the best candi-
date scheduling algorithm and decide the number of processors
for execution,

PPT allows the addition of a new scheduling algorithm to
be added as a member of the list of scheduling algorithms. The
only restriction is that the scheduling algorithm should perform
scheduling and mapping simultaneously. This is true for nearly
all variants of list scheduling i . However, the cluster-
ing algorithms proposed in [7] does not fit into this category.
Before a scheduling algorithm can be added as a member of
scheduling algorithms of the scheduler, the performance evalu-
ation simulator, which is provided by PPT, must be executed for
the scheduling algorithm in order to obtain the relationship be-
tween the scheduling algorithm and the properties of DAGs.

The Communication Analyzer : The commmication
analyzer is responsible for detecting the redundant communica-
tions, removing the redundant communication, and creating a
communication table, which will be used by the code generator.

To detect and remove the redundant communications and
create the communication table, the communication analyzer
builds atask block table ing to the (task, processor) table
and the earliest start time table. In the task block table, some
consecutive tasks on the same processor are labeled with the
same block number if for those consecutive tasks only the first
and the last tasks must send or receive date from other proces-
sors. According to the labeled communication table, a new
communication table is created and redundant communication

434

is removed.

The Code Generator : The code generator is responsible
for generating the corresponding procedure call for each taskon
processors and inserting the commamication primitives. Ac-
cording to the task block table, the corresponding procedure
calls for tasks on processors are generated by consulting the at-
tribute table. The communication primitives are inserted ac-
cording to the communication table. The information about the
data that must be transferred to tasks on other processors is pro-
vided by the attribute table.

Since the syntax of the basic communication primitives
are machine dependent, there is a need for a communication
primitives insertion routine. In the current development, we

vide two communication primitives insertion routines for
K;EUBE—Z and CM-5, respectively. One can potentially use
syntax of commercial packages like EXPRESS to achieve por-
tability However, we do not use the communication primitives
provided by these softwares inour tool. This is because that the
communication primitives provided by these software are im-
plemented by using the communication primitives provided by
the machines. The overhead is significant and will usually re-
duce the performance of a parallel program. For example, on
NCUBE-2, the time to execute the communication primitives
provided by EXPRESS, in general, is 20% more than the time
to execute the communication primitives provided by
NCUBE-2.

The Performance Evaluator : The performance evalua-
tor is responsible for executing the parallel program on the tar-
get machine and reporting the execution time of the paralle]
program. If the programmer is not satisfied the performance of
the parallel program, it will provide information about the ex-
ecution time of each processor; and the predicted (simulation)
and real (experimental) speedups of the parallel program. Itcan
also point out the bottleneck processors for the programmer.

Since many distributed memory multiprocessors, such as
NCUBE-2 and CM-5, provide the execution profiler for the
programmer to check the time spent in the various subroutines
and functions on each processor, the programmer can use the in-
formation provided by the performance evaluator to make fur-
ther refinement/modification of the program partitioning.

References:

[11 T.L. Adam, K.M. Chandy, and J.R. Dickson, "A

Comparison of List Schedules for Parallel Processing

Systems,” Communication of ACM, Vol. 17, No. 12,
, 685-690, 1974.

.C. Chung and S. Ranka, "Applications and Per-
formance Analysis of A Compiler-Time Optimiza-
tion Approach for List Scheduling Algorithms on
Distributed Memory Multiprocessors,” Proceedings
of Supercomputing’92.

J. Hayes and T. Mudge, " Architecturé of a Hypercube
Supercomputer,” Proc. of International Conference
on Parallel Processing, pp. 653-660, 1986.
J.J. Hwang et al, "Scheduling Precedence Graphs in
%ysl:ems SIAwAilmJ » nal of C. Ve e
imes,” our) uting, Vol. 18, pp.
244-257, 1989. ompiing PP
G.C. Sih and E.A. Lee, "Scheduling to Account for
Interprocessor Communication within Interconnec-
tion-Constrained Processor Networks,” Proceed-
ings of International Conference on Parallel
Processing, Vol. 1, pp. 916, 1990,
L.W. Tucher and G.G. Robertson, " Architecture and
Applications of the Connection Machine,” /EEE
Computer Magazines, Pp- 26-38, August 1988.
M.Y. Wu and D.D. Gajski, "Hypertool: A Program-
ming: Aid for Message Passing Systems,” /EEE
Trans. on Parallel and Distributed Systems, Vol. 1,
No.3, pp. 330--343, 1990,

2]

31

[4]

(51

(6]

)

