A Parallel Run-Time Iterative Load Balancing Algorithm for
Solution—-Adaptive Finite Element Meshes on Hypercubesi

Yeh—Ching Chung, Yaa—Jyun Yeh, and Chia—Cheng Liu

Department of Computer Science & Information Engineering
Feng Chia University
Taichung, Taiwan 407, ROC
e-mail : ychung, yeher, ccliu@pine.iecs.fcu.edu.tw

Abstract — To efficiently execute a finite element
program on a hypercube, we need to map nodes of the cor-
responding finite element graph to processors of a kyper-
cube such that each processor has approximately the same
amount of computational load and the communication
among processors is minimized. If the number of nodes of
a finite element graph will not be increased during the
execution of a program, the mapping only needs to be per-
Jormed once. However, if a finite element graph is solu-
tion—adaptive, that is, the number of nodes will be in-
creased discretely due to the refinement of some finite
elements during the execution of a program, a run—time
load balancing algorithm has to be performed many times
in order to balance the computational load of processors
while keeping the communication cost as low as possible.
In this paper, we proposed a parallel iterative load balanc-
ing algorithm (ILB) to deal with the load imbalancing
problem of a solution—adaptive finite element program.
The proposed algorithm has three properties. First, the al-
gorithm is simple and easy to implement. Second, the
execution of the algorithm is fast. Third, it guarantees that
the computational load will be balanced after the execu-
tion of the algorithm. We have implemented the proposed
algorithm along with two parallel mapping algorithms,
parallel orthogonal recursive bisection (ORB) [11] and
parallel recursive mincut bipartitioning (MC) (2], on a
16-node NCUBE-2. Three criteria, the execution time of
load balancing algorithms, the computation time of an ap-
plication program under different load balancing algo-
rithms, and the total execution of an application program
(under several refinement phases) are used for perfor-
mance evaluation. Simulation results show that (1) the
execution time for ILB is very short compared to those of
MC and ORB; (2) the mappings produced by ILB are much
better than those of ORB and MC; and (3) the speedups
produced by ILB are much better than those of ORB and
MC.

Key Words : Hypercube, load balancing, DIME, map-
ping, solution-—-adaptive finite element meshes.

1. Introduction

The finite element method is widely used for the
structural modeling of physical systems [8]. In the finite

$ The work of this paper is partially supported by NSC under con-
tract NSC83-0408-E-035-005.

element model, an object can be viewed as a finite element
graph, which is a connected and undirected graph that con-
sists of a number of finite elements. Each finite element
is composed of a number of nodes. The number of nodes
of a finite element is determined by an applications. Due
to the properties of computation—intensiveness and com-
putation—locality, it is very attractive to implement finite
element method on distributed memory multiprocessors
(1] (9] [11].

In a distributed memory multiprocessor, such as a hy-
percube, processors communicate to each other by mes-
sage passing. To efficiently execute a finite element mod-
eling program on a distributed memory multiprocessor,
we need to map nodes of the corresponding finite element
graph to processors of a distributed memory multiproces-
sor such that each processor has approximately the same
amount of computational load and the communication
among processors is minimized. If the number of nodes
of a finite element graph will not be increased during the
execution of a program, the mapping only needs to be per-
formed once. However, if a finite element graph is solu-
tion—adaptive, that is, the number of nodes will be in-
creased discretely due to the refinement of some finite
elements during the execution of a program, a dynamic
load balancing algorithm has to be perfored many times
in order to balance the computational load of processors
while keeping the communication cost as low as possible.
For example, in Figure 1, a finite element graph is refined
once during run—time. Initially, each processor has 16
nodes. If no load balancing algorithm is performed, after
the refinement, the number of nodes assigned to Py, Py, P,
and Pj are 64, 16, 16, and 16, respectively. However, if a
load balancing algorithm is carried out for the refinement,
the load may be evenly distributed as shown in
Figure 1(c).

To solve the load imbalancing problem of a solution—
adaptive finite element program on a distributed memory
multiprocessor, nodes of a refined finite element graph can
be remapped (nodes remapping approach) or load of a re-
fined finite element graph can be redistributed based on
the current load of processors (load redistribution ap-
proach). For the former case, nodes remapping can be per-
formed by some fast mapping algorithms. In the load re-
distribution approach,- after a finite element graph is
refined, a load balancing heuristic is applied to balance the
computational load of processors. For both approaches, a
good nodes remapping or load redistribution algorithm

210

0-8186-6555-6/94 $04.00 © 1994 IEEE

P, Py P Py Pot | Py
= | 1 | |
>. aVa' K] >, P, >
| —_— — N . 4 d N 1,
} | } l i |
| | !
- Sy) - - in
|
| |
Py l P3 Py l P3 P !
(a) The initial finite element graph. (b) The finite element graph after (c) Nodes remapping for (b).
the refinement.
Figure 1 : An example of solution—-adaptive finite element graph and load redistribution.

should have two properties. First, its execution is fast. Se-
cond, it should produce a good mapping result.

In this paper, we present a parallel run—time iterative
load balancing algorithm to deal with load imbalancing
problems of executing solution—adaptive finite element
programs on hypercubes. The algorithm has three proper-
ties. First, the algorithm is simple and easy to implement.
Second, the execution of the algorithm is fast. Third, it
guarantees that the computational load will be balanced
after the execution of the algorithm. We have implement-
ed the algorithm on a 16-node NCUBE-2 along with two
parallel mapping algorithms, orthogonal recursive bisec-
tion [11] and recursive min~cut bipartitioning [2]. Three
criteria, the execution time of load balancing algorithms,
the computation time of an application program under dif-
ferent load balancing algorithms, and the total execution
of an application program (under several refinement
phases) are used for performance evaluation. Simulation
results show that the proposed load balancing algorithm
outperforms the other two and produces very good map-
ping results.

In Section 2, a brief survey of related work will be
presented. A hypercube definition and the proposed load
balancing algorithm will be described in Section 3. The
comparisons of the proposed parallel run—time iterative
load balancing algorithm, parallel orthogonal recursive
bisection, and parallel recursive min—cut bipartitioning
will be given in Section 4.

2. Related Work

Many finite element mapping algorithms have been
addressed in the literature. In [1], a binary decomposition
approach was used to partition a nonuniform mesh graph
into modules such that each module has the same amount
of computational load. These modules were then mapped
on meshes, trees, and hypercubes. This method does not
try to minimize the communication cost.

Sadayappan and Ercal [9] proposed nearest-neigh-
bor mapping approach to map planar finite element graphs
on processor meshes. This approach used the stripes parti-
tion (stripes mapping) strategy to minimize the commu-
nication cost of processors and then used the boundary re-
finement heuristic to balance the computational load of
processors. However, the boundary refinement heuristic

211

does not guarantee the computational load will be bal-
anced.

Williams [11] proposed three parallel load balancing
algorithms, orthogonal recursive bisection, eigenvector
recursive bisection, and a simple parallel simulated
annealing, for solution-adaptive finite element graph
problems. The performance analysis shows that the time
to execute orthogonal recursive bisection is the fastest and
the execution of parallel simulated annealing is time con-
suming. But the mapping produced by simulated anneal-
ing saves of 21% in the execution time of the finite ele-
ment mesh than the mapping produced by orthogonal
recursive bisection.

For those work mentioned above, only the work of
[11] deals with load imbalancing problem of solution—
adaptive finite element programs. Others assume that the
number of nodes of a finite element graph will not be
changed during the execution of a program.

3. The Proposed Load Balancing Algorithm

In this section, we will first give a definition for hy-
percubes. Then, we will describe the proposed load bal-
ancing algorithm in details.

3.1. Hypercubes

Definition 1 : An n—-dimensional hypercube @, for

n > 1, can be recursively defined in terms of the graph
product x as follows [5]:

)

On=K2 X On_y,

where K> = (] is the complete two-node graph.

Definition 2 : In an n—cube two processors, Py and
Py, are adjacent if the address of Py differs from that of Py
by one bit. Moreover, P is said to be the jth adjacent pro-
cessor of Py if P, and Py are adjacent processors and the
address of i’ differs from that of Py at the jth significant
bit, where j = 0 . n—1. Weuse Py (1) to denote the jth adja-
cent processor of Py

3.2. A Parallel Run-Time Iterative Load Bal-
ancing Algorithm

Many dynamic load balancing algorithms have been
addressed in the literature [6] [7] [10]. However, the prob-

l.forj=0to(n-1)do

if (load(P;) = load(P;(j))) then N <
else /* need to load transfer */
{ avg = (load(P;) + load(P;(j))) + 2.

{ N « avg - load(P;(j)) .
Receive N nodes from P;(j). }

. load(P;) < load(P;) + INI. }

10. else /* P; must send nodes to P;(j) */

11. { N« load(P;(j)) - avg.

O N LW

Algorithm iterative_load_balancing_for_hypercubes()
2 { Send load(P;) to P;(j) and receive load(P;(j)) from P;(j).
0.

if load(P;) < avg then /* P; must receive nodes from P;(j) */

12. Find the set of nodes M in P; that are adjacent to nodes in P;(j). M| « O&.
13. while (M1 + IMl < N) do

14. {M«MUM,.

15. Find the set M of all nodes in P; are adjacent to nodes in M. }

16. M « M U M,, where M, — M and IM| + IMl = N.

17. send M to P;(j).

18. load(P;) < load(P;) - N. }

19. }

20. }

end_of iterative_load_balancing_for_hypercubes

Figure 2 : The proposed run-time iterative load balancing algorithm.

lem addressed in this paper is different from that in [6] [7]
[10]. At run—time, the computational load increased in a
solution—adaptive finite element program is discrete in na-
ture while that in [6] [7] [10] is continuous. Therefore,
those approaches proposed in [6] [7] [10] cannot efficient-
ly handle the load imbalancing issue presented in this pa-
per.

The proposed parallel run—time load balancing algo- .

rithm uses iterative approach to achieve load balancing.
For an n—cube, initially, every processor P; calculates the
average value avg of its current computational load, de-
noted by load(P;), and the current computational load of
P;(0), denoted by load(P;(0)). If load(P;) < avg, then N =
avg —-load(P;(0)), and load(P;) = load(P;) + INI. If load(P;)
> avg, then N = load(P;) — avg and load(P;) = load(P;) ~
N. Then every processor P; executes physical load transfer
according N (Note that, if N is negative, it denotes the
number of nodes that processor P; has to receive from
P;(j); otherwise, it denotes the number of nodes that pro-
cessor P; has to transfer to P;(j)). Assume that processor
P; needs to send N nodes to processor P;(j) and let M denote
the set of nodes in P; that are adjacent to those of P;(j). In
order to keep the communication cost as low as possible,
nodes in M are transferred first. If IM] is less than [V, then
nodes adjacent to those in M are transferred. If the sum of
IM1 and the number of nodes adjacent to those in M is less
than IV, then nodes adjacent to those nodes adjacent to
those in M are transferred. This process is continued until
the number of nodes transferred to P;(j) is equal to INI. At
the next iteration, every processor P; calculates the aver-
age value of its current computational load and the current
computational load of P;(1), determines the values of N
and load(P;), and then executes the load transfer, and so
on, until ~ iterations are executed, where 7 is the dimen-
sion of an n—cube. The algorithm is given in Figure 2.

In algorithm iterative_load_balancing_for_hyper-
cubes, lines 2 to 7 take constant time. Line 12 takes M|

212

time, where IM] is the cardinality of set M. Lines 13-15
take T time, where T is maximum number of nodes trans-
ferred between processors. Line 16 takes constant time.
Let the time for a processor to send (receive) T nodes of
data to (from) its adjacent processor in a hypercube take
L + T x t, time, where & is the startup time and the 1, is
the data transmission time per data. Then line 8 and line
17 take f; + T'x t,, time. Line 18 takes constant time. Lines
1 to 20 form a loop. This loop is executed # times, where
n is the dimension of a hypercube. The complexity of al-
gorithm iterative_load_balancing_for_hypercubes is
O(nx(ts+Txt,)).

4. Simulation and Experimental Results

We have implemented algorithm irera-
tive_load_balancing_for_hypercubes (ILB) on a 16-node
NCUBE-2 along with two parallel mapping algorithms,
orthogonal recursive bisection (ORB) [11] and recursive
min—cut bipartitioning (MC) [2]. All programs are written
in EXPRESS C. Three criteria, the execution time of load
balancing algorithms, the computation time of an applica-
tion program under different load balancing algorithms,
and the total execution of an application program (under
several refinement phases) are used for performance eval-
uation.

In dealing with finite element meshes, the distributed
irregular mesh environment (DIME) [12] is used to gener-
ate test samples. To create test samples, an initial finite
element mesh, which has 311 nodes, is created by DIME.
Then, the initial finite element mesh is refined 5 times.
The refined process is carried out by DIME. In each re-
finement, the corresponding mesh structure is saved to a
datafile. Those data files will be used as test samples. The
number of nodes for test samples are shown in Table 1.

To emulate the execution of a solution—adaptive fi-
nite element program on an NCUBE-2, we first read the

Time (sec) PN=2 Time (sec) PN=4 Time (sec) PN=8 Time (sec) PN=16
10000.00 10000.00 100000.00 100000.00
MC // MC e
1000.00 1000.00 10000.00 MC 10000.00 / A
- A 1000.00 1000.00 -
100.00 ORB 100.00 ORB ORB
ORB/ILB ;0,00 ORB . oRB/LE 100.00 gLy
10.00 10.00 y
ORB/LB 10.00 g 10.00 o
r”‘—/ -+ Mo/l ,—’HCTIL.B
L0 1.00 1.00 :_,. MC/ILB 1.00
ol0 MOILB 0.10 0.10 0.10
01 2 3 4 5 0t 2 3 4 S 6 1 2 3 4 5 0ot 2 3 4 5
refinement refinement refinement refinement
(a) 1—ube. (b) 2—cube {c) 3—cube. (d) 4—cube.
Figure 3 : The execution time of ORB, ORB/ILB, MC and MC/ILB on hypercubes.

Table 1 : The number of hodes of test samples.

Sample No. Number of Nodes
Sample 1 (Initial mesh) in
Sample 2 (The 1st refinement) 870
Sample 3 (The 2nd refinement) 1824
Sample 4 (The 3rd refinement) 2928
Sample 5 (The 4th refinement) 4671
Sample 6 (The 5th refinement) 9347

mesh structure of the initial finite element mesh (Sample
1). Then, algorithm ORB or MC is applied to map nodes
of the initial finite element mesh to processors. After the
mapping, the computation for each processor is carried
out. In our example, the computation is to solve La-
places’s equation (Laplace solver). Since it is difficult to
predict the number of iterations for convergence, we as-
sume that the maximum iterations executed by our La-
place solver is 10000. When the computation is con-
verged, the mesh structure of the first refined finite
element mesh (Sample 2) is read. To balance the computa-
tional load, ORB or MC or ILB is applied. After aload bal-
ancing algorithm in performed, the computation for each
processor is carried out. The refinement, load balancing,
and computation processes are performed in turn until the
execution of a solution—adaptive finite element program
in completed.

To evaluate the performance of ORB, MC, and ILB,
five cases are considered:

Case 1 : The test samples are executed in sequential.

Case 2 : Nodes in the initial finite element mesh is
mapped to processor by ORB. In each refinement, ORB
is applied to balance the computational load of processors.

Case 3 : Nodes in the initial finite element mesh is
mapped to processor by ORB. In each refinement, ILB is
applied to balance the computational load of processors.
We use ORB/ILB to represent the proposed load balancing
algorithm used in this case.

Case 4 : Nodes in the initial finite element mesh is
mapped to processor by MC. In each refinement, MC is
applied to balance the computational load of processors.

Case 5 : Nodes in the initial finite element mesh is
mapped to processor by MC. In each refinement, ILB is
applied to balance the computational load of processors.
We use MC/ILB to represent the proposed load balancing
algorithm used in this case.

4.1. Comparisons of The Execution Time of
ORB, MC, and ILB

The execution time of ORB, ORB/ILB, MC, and
MC/ILB for test samples on n—cube are shown in Figure 3,
where n =1, 2, 3, and 4. From Figure 3, we can see that
the execution time of MC ranges from hundreds of seconds
to a few hours, the execution time of ORB ranges from a
few seconds to hundreds of seconds, the execution time of
ORB/ILB ranges from a few seconds to tens of seconds,
and the execution time of MC/ILB is about a few seconds.
Obviously, the execution time of ILB is much less than
those of ORB and MC. Itis also interesting that the execu-
tion time of ORB/ILB is much higher than that of MC/ILB
when the number of processors and the number of nodes
increased. For example, if the number of processors is 16,
the execution time of ORB and MC/ILB for the fifth re-
finement (sample 5) are 82.70 and 8.14 seconds, respec-
tively, i.e., the execution time of ORB/ILB is 10 times of
the execution time of MC/ILB. The possible reason is that
the partitions produced by MC is better (nodes in each
partition are tied together) than that of ORB, especially for
unstructured meshes. When ILB is applied to balance the
computational load in each refinement, the time of migra-
tion nodes from overloaded processors to underloaded
processors for the case where MC is used to map the initial
finite element mesh on a hypercube is less than that of the
case where ORB is used to map the initial finite element
mesh on a hypercube.

4.2. Comparisons of The Execution Time of
Test Samples under Different Load Balancing
Algorithms

In Table 2, we show the time for the Laplace solver

10 execute one iteration (computation + communication)
for test samples under different load balancing algorithms

213

Table 2 : The time for the Laplace solver to execute one iteration (computation + communication)
for the test samples under different mapping schemes on hypercubes.

Time unit ; 1 X 10-3 second
Cube algorithm ample Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Total
O—cube sequential 10.8 30.5 64.3 100.0 165.6 335.2 706.4
ORB 8.8 272 474 722 105.7 2194 480.7
ORB/ILB 8.8 22.7 43.8 66.3 104.2 218.6 464.4
1-cube MC 126 27.8 48.9 77.6 1132 218.5 498.6
MC/ILB 12.6 250 46.4 69.0 104.6 199.4 457.0
ORB 58 15.5 26.7 39.1 61.9 118.5 267.5
2_cube ORB/ILB 5.8 11.6 22.0 34.3 61.5 117.0 2522
MC 9.1 20.1 29.9 41.9 554 111.6 268.0
MC/ILB 9.1 17.9 28.3 37.2 51.2 102.0 245.7
ORB 55 99 14.3 20.0 35.1 63.1 1479
ORB/ILB 55 8.5 12.8 17.9 34.2 62.4 141.2
3-cube MC 7.0 117 15.9 219 28.6 559 141.0
MC/ILB 7.0 10.6 15.1 19.5 26.5 50.2 128.9
ORB 6.4 9.0 9. 12.1 17.5 32.1 86.2
4-cube ORB/ILB 6.4 7.3 8. 9.9 17.8 31.5 81.4
MC 6.9 8.8 10. 13.3 15.5 28.2 83.2
MC/ILB 6.9 8.3 10. 11.8 14.4 25.3 67.7
Speedup Speedup Speedup Speedup
18 3.0 6.0 1
6 5.5 10 MC/ILEy ~— "
ORB/ILB 2.5 5.0 DRE/L [ORB/ILY
14 45 —1 . —
1.2 20 40 ;
1.0 33 6 ORB
15 3.0
08 / 25 5 /
0.6 10 M 20 4 MC
04 ORB Sequential // 1.5 / 3 /
i MC 0.5 10 Y 2 /
02 /‘MC 05 ’/ Sequenti 1 - L —ye—
0.0 b= 0 o 00 —) o Sequential
100 1000 10000 100000 1000000 100 1000 10000 100000 1000000 100 1000 10000 100000 1000000 100 1000 10000 100000 1000000
iteration iteration iteration iteration
(a) 1—cube. (b) 2~cube. (c) 3—cube. (d) 4—cube.
Figure 4 : The speedups for the test finite element meshes under different load balancing
algorithms on n—cube, where n=1, 2, 3, and 4.

on n—cube, where n = 1, 2, 3, and 4. Let T;(S) denote the
time for the Laplace solver to execute one iteration for
Sample { under load balancing algorithm S, where i =1, 2,
..., 6 and § € {ORB, ORB/ILB, MC, MC/ILB}. From
Table 2, we can see that for Samples 1-3, in general,
T;(ORB/ILB) < T;{ORB) < T;(MC/ILB) < T;(MC), where
i=1,2,and 3. For Sample 4, T4(ORB/ILB) < T4(MC/ILB)
< T4(ORB) < T4(MC). For Sample 5-6, T;(MC/ILB) <
T;(MC) < T;(ORB/ILB) < T;{ORB), where i = 5 and 6. If
we assume that the Laplace solver executes the same num-
b6er of iterations for each test sa6mples, then

6
> T(MC/ILB) < > T(ORB/ILB) < > T(ORB) <

jm=]

6 6
z T{(MC) for 1-cube and 2—cube; and Z T(MC/ILB) <

im] i=]

im]

[} 6 [}
D T{ORB/ILB) < y T(MC) < " T(ORB) for 3-cube

im]

im}

im] im]

and 4—cube. From the above observations, ILB produces
much better mappings than those of MC and ORB.

4.3. Comparisons of The Total Execution
Time for Test Samples

The total execution time of test samples on a hyper-
cube is defined as follows:

6
Trotal(S) = Toxec(S) + 9 TAS) X iteration, (2)

jm]
where T;,4i(S) is the total execution time of test samples
under load balancing algorithm S on a hypercube, S €
{ORB, ORB/ILLB, MC, MC/ILB}, Texe(S) is the total
execution time of load balancing algorithm S for test sam-
ples, and iteration; is the number of iterations executed by
the Laplace solver for Sample i. From Equation 2, we can
derive the speedup achieved by a load balancing algorithm

as follows:

214

6
Speedup(S) = (Z Seq; X iteration;) +

i1

6
(Toxec(S) + 2 T(S) X iteration;) (3)
i=1

where Speedup(S) is the speedup achieved by a load bal-
ancing algorithm S, S € {ORB, ORB/ILB, MC, MC/ILB};
and Seg; 1s the time for the Laplace solver to execute one
iteration for Sample { in sequential. The maximum speed-
up achieved by a load balancing algorithm § is derived by
setting the value of iteration; to «. Then, we have the fol-
lowing equation:

6 [
Speeduppax(S) = z Seq; + Z T(S) @)
im] joel
where Speedupp,x(S) is the maximum speedup achieved
by a load balancing algorithm S and § € {ORB, ORB/ILB,
MC, MC/ILB).

The speedups for test samples under different load
balancing algorithm are shown in Figure 4. Since it is dif-
ficult to predict the number of iterations executed by the
Laplace solver for test samples, in Figure 4, we assume
that the Laplace solver executes the same number of itera-
tions for each test sample. From Figure 4, we can see that,
in general, Speedup(MC/ILB) > Speedup(ORB/ILB) >
Speedup(ORB) > Speedup(MC). We also obverse that if
the number of iterations executed by the Laplace solver is
less than 10000, Speedup(MC) is less than 1. This implies
that if the convergence rate of a Laplace solver is fast, MC
is not a good load balancing algorithm for a solution—adap-
tive finite element program. The maximum speedups
achieved by load balancing algorithms for test samples on
hypercubes are shown in Table 3. From Table 3, we ob-
serve that, in general, Speedupmax(MC/ILB) > Speed-
Upmax(ORB/ILB) > Speedupm,x(MC) > Speed-
UPmax(ORB).

Table 3 : The maximum speedups achieved
by load balancing algorithms for test samples
onh n—cube, where n= 1, 2, 3, and 4.

n—cube
Algoritn I—cube 2—cube 3—cube 4-cube
ORB 1.47 2.64 478 8.19
ORB/ILB 1.52 2.8 5.00 8.68
MC 1.42 264 5.01 8.49
MC/ILB 1.55 2.88 5.48 10.43

5. Conclusions

In this paper, a parallel run—time iterative load bal-
ancing algorithm (ILB) is proposed to deal with the load
imbalancing problem of a solution-adaptive finite ele-
ment program. The proposed algorithm has three proper-
ties. First, the algorithm is simple and easy to implement.
Second, the execution of the algorithm is fast. Third, it
guarantees that the computational load will be balanced
after the execution of the algorithm. We have implement-
ed the proposed algorithm along with two paraliel map-
ping algorithms, parallel orthogonal recursive bisection

(ORB) [11] and parallel recursive mincut bipartitioning
(MO) [2], on a 16-node NCUBE-2. Three criteria, the
execution time of load balancing algorithms, the computa-
tion time of an application program under different load
balancing algorithms, and the total execution of an ap-
plication program (under several refinement phases) are
used for performance evaluation. Simulation results show
that (1) the execution time for ILB is very short compared
to those of MC and ORB; (2) the mappings produced by
ILB are much better than those of ORB and MC; and (3)
the speedups produced by ILB are much better than those
of ORB and MC.

References:

[11 M.J.Berger and S.H. Bokhari, ”A Partitioning Strat-
egy for Nonuniform Problems on Multiprocessors,”
IEEE Trans. on Computers, Vol. C-36, No. 5, pp.
570-580, 1987.

[2] F. Ercal,]J. Ramanujam, and P. Sadayappan, “Cluster
Partitioning Approaches to Mapping Parallel Pro-
grams onto a Hypercube,” Parallel Computing, 13,
pp. 1-16, 1990.

[3] S. Hammond and R. Schreiber, "Mapping Unstruc-
tared Grid Problems to the Connection Machine,”
Technical Report 90.22, RIACS, October 1990.

[4] A.Y. Grama and V. Kumar, “Scalability Analysis of
Partitioning Strategy for Finite Element Graphs: A
Summary of Results,” Proceedings of Supercomput-
ing’92, pp. 83-92, 1992.

[S1 FE I;arary, Graph Theory, Addison Wesley, Mass.,
196

[6] D.Y. Hinz, A Run-Time Load Balancing Strategy
for Highly Parallel Systems,” Proceedings of Dis-
tributed Memory Multiprocessor Conference, pp.
951-961, 1990

{71 D. King and E.J. Wegman, “Hypercube Dynamic
Load Balancing,” Proceedings of Distributed
M9e9n(§ory Multiprocessor Conference, pp. 962-965,
1

[8] L. Lapidus and G.E Pinder, Numerical Solution of
Partial Differential Equations in Science and Engi-
neering. New York: Wiley, 1983

(91 P. Sadayappan and F. FErcal, “Nearest~-Neighbor
Mapping of Finite Element Graphs on Processor
meshes,” IEEE Trans. on Computers, Vol. C-36 No.
12, pp. 1408-1424, 1987.

(101 VK. Saletore, "A Distributed and Adaptive Dynam-
ic load balancing algorithm for Parallel Processing
of Medium—Grain Tasks,” Proceedings of Distrib-
uted Memory Multiprocessor Conference, pp.
994-999, 1990

[11] R.D. Williams, "Performance of Dynamic L.oad Bal-
ancing Algorithms for Unstructured Mesh Calcula-
tions,” Councurrency : Practice and Experience,
Vol. 3(5), pp- 457481, October 1991.

[12] R.D. Williams, "DIME: A User’s Manual,” Caltech
Cé);gurrem Computation Report C3P 861, Feb.
1990.

215

