Efficient Methods for kr—r and r—kr Array Redistribution’

Yeh-Ching Chung® and Ching-Hsien Hsu

Department of Information Engineering
Feng Chia University, Taichung, Taiwan 407, ROC
Tel : 886-4-4517250 x2706
Fax : 886-4-4515517
Email : ychung, chhsu@pine.iecs.fcu.edu.tw

Abstract- Array redistribution is usually required
to enhance algorithm performance in many parallel
programs on distributed memory multicomputers.
Since it is performed at run-time, there is a
performance tradeoff between the efficiency of new
data decomposition for a subsequent phase of an
algorithm and the cost of redistributing data among
processors. In this paper, we present efficient
algorithms for array redistribution. The most
significant improve-ment of our algorithms is that a
processor does not need to construct the send/receive
data sets for a redistribution. Based on the
packing/unpack-ing information that derived from
the BLOCK-CYCLIC(kr) to BLOCK-CYCLIC(r)
redistribution (or vice versa), a processor can
pack/unpack array elements into (from) messages
directly. To evaluate the performance of our
methods, we have implemented our methods along
with Thakur’s methods on an IBM SP2 parallel
machine. The results show that the execution time
of our algorithms is approximately 5% to 27% faster
than that of Thakur’s methods.

Key words: array redistribution, distributed memory
multicomputers, data distribution.

1. Introduction

Array redistribution, in general, can be performed
in two phases, the send phase and the receive phase.
In the send phase, a processor P; has to determine all
the data sets that will be sent to destination
processors, pack those data sets, and send those
packed data sets to their destination processors. In
the receive phase, a processor P; has to determine all
the data sets that will be received from source
processors, receive those data sets, and unpack data
elements in those data sets to their corresponding
local array positions. This means that each
processor P; should compute the following four sets.

* Destination Processor Set (DPS[P;]) : the set of
processors to which P; has to send data.

* Send Data Sets (U SDS{P;, P;]) . the sets
PeDPS[P]
of array elements that processor P; has to send to
its destination processors, where SDS[P;, Pj]
denotes the set of array elements that processor
P; has to send to its destination processor P;.

* Source Processor Set (SPS[P;]) : the set of
processors from which P; has to receive data.

* Receive Data Sets (U RDS[P,, P,]) : the
PieSPS{A]
sets of array elements that P; has to receive from
its source processors, where RDS[P;, P;] denotes
the set of array elements that processor P; has to
receive from its source processor P;.

Since array redistribution is performed at run-time,
there is a performance trade-off between the
efficiency of a new data decomposition for a
subsequent phase of an algorithm and the cost of
redistributing data among processors. Thus
efficient methods for performing array redistribution
are of great importance for the development of
distributed memory compilers. In this paper, we
present efficient methods to perform BOLCK-
CYCLIC(kr) to BOLCK-CYCLIC(r) and BOLCK-
CYCLIC(r) to BOLCK-CYCLIC(kr) redistribution.
In our algorithms, based on the packing and
unpacking information that derived from BOLCK-
CYCLIC(kr) to BOLCK-CYCLIC(r) (and vice versa)
redistribution, a processor can pack and unpack array
elements without calculating the send/receive data
sets. Therefore, the computation overheads can be
reduced greatly.

The paper is organized as follows. In Section 2,
a brief survey of related work will be presented.

Section 3 presents the algorithms for array
redistribution. The performance evaluation and
comparisons of redistribution algorithms that

proposed in this paper and in [11, 12] will be given in
Section 4.

' The work of this paper was partially supported by NSC of R.O.C. under contract NSC-86-2213-E035-023.

2
The correspondence addressee.

0730-3157/97 $10.00 © 1997 IEEE

82

2. Related Work

Many methods for performing array redistribution
have been presented in the literature. Gupta et al. [2]
derived closed form expressions to and virtual
processor approach for addressing the problem of
reference index-set identification for array statements
with BLoCK-cycLIc(c) distribution. A similar
approach was presented in [10]. In [1], Chatterjee
et al. enumerated the local memory access sequence
of communication sets for array statements with
BLOCK-CYCLIC(c) distribution based on a finite-state

machine. Kennedy et al. [6] also presented
algorithms to compute the local memory access
sequence for array statements with BLOCK-

CYCLIC(c) distribution.

Thakur et al. [11,12] presented algorithms for
run-time array redistribution in HPF programs. In
[8,9], Ramaswamy et al. used a mathematical
representation, PITFALLS, for regular data
redistribution. The basic idea of PITFALLS is to
find all intersections between source and target
distributions. In [3], an approach for generating
communication sets by computing the intersections of
index sets corresponding to the LHS and RHS of
array statements was also presented.

Kaushik et al. [5] proposed a multi-phase
redistribution approach for BLOCK-CYCLIC(s) to
BLOCK-CYCLIC(?) redistribution. In [14], portion
of array elements were redistributed in sequence in
order to overlap the communication and computation.
In [15], a spiral mapping technique was proposed to
reduce communication conflicts when performing a
redistribution. Kalns er al. [4] proposed a processor
mapping technique to minimizes the amount of data
exchange for BLOCK to BLOCK-CYCLIC(c)
redistribution and vice versa. In [7], a generalized
circulant matrix formalism was proposed to reduce
the communication overheads for BLOCK-CYCLIC(r)
to BLOCK-CYCLIC(kr) redistribution. Walker et al.
[13] used the standardized message passing interface,
MPI, to express the redistribution operations.

3. Efficient Methods for kr—r and r—kr
Redistribution

In general, the BLOCK-CYCLIC(s) to BLOCK-
CYCLIC(?) redistribution can be classified into three
types,

* sis divisible by ¢, i.e. BLOCK-CYCLIC(s=kr) to
BLOCK-CYCLIC(t=r) redistribution,

* tis divisible by s, i.e. BLOCK-CYCLIC(s=r) to
BLOCK-CYCLIC(r=kr) redistribution,

* sisnotdivisible by r and ¢ is not divisible by s.

To simplify the presentation, we use kr—r, r—kr, and
s—1 to represent the first, the second, and the third
types of redistribution, respectively, for the rest of
the paper. In this section, we first present the

83

terminology used in this paper and then describe
efficient methods for kr—r and r—kr redistribution.

Definition 1: Given a BLOCK-CYCLIC(s) to
BLOCK~-CYCLIC(!) redistribution, BLOCK-
CYCLIC(s), BLOCK-CYCLIC(?), s, and ¢ are called
the source distribution, the destination distribution,
the source distribution factor, and the destination
distribution factor of the redistribution , respectively.

Definition 2: Given an s—¢ redistribution on
A[1:N] over M processors, the source local array of
processor P;, denoted by SLA,[0:N/M-11, is defined
as the set of array elements that are distributed to
processor P; in the source distribution, where 0 < §
<M-1. The destination local array of processor P;,
denoted by DLA;[0:N/M-1], is defined as the set of
array elements that are distributed to processor P; in
the destination distribution, where 0 < j < M—1.

Definition 3: Given an s—t redistribution on
A[1:N] over M processors, the source processor of an
array element.in A[1:N] or DLA;[0:N/M—1] is defined
as the processor that owns the array element in the
source distribution, where 0 < j £ M-1. The
destination processor of an array element in A[1:N]
or SLAJJO:N/M~1] is defined as the processor that
owns the array element in the destination distribution,
where 0 <1 < M-1.

Definition 4: Given an s—t redistribution on
A[1:N] over M processors, we define SG : SLA,[m] —
A[k] is a function that converts a source local array
element SLA,[m] of P; to its corresponding global
array element A[k] and DG : DLAjn] — A[l]l is a
function that converts a destination local array
element DLA{n] of P; to its corresponding global
array element A[/], where 1 <k, IS Nand 0<m, n
< NIM-1.

Definition 5: Given an s—¢ redistribution on
A[1:N] over M processors, a global complete cycle
(GCC) of A[1:N] is defined as M times the least
common multiple of s and ¢, i.e., GCC=MXIcm(s,t).
We define A[1:GCC] as the first global complete
cycle of A[1:N], A[GCC+1:2xXGCC] as the second
global complete cycle of A[1:N], and so on.

Definition 6: Given an s—t redistribution, a local
complete cycle (LCC) of a local array SLA,[0:N/M~1]
(or DLA;{0:N/M-1]) is defined as the least common
multiple of s and ¢, i.e., LCC = lcm(s, t). We define
SLA[0:LCC-1] (DLA;[0: LCC-1]) as the first local
complete cycle of SLA,[0:N/M-1] (DLA;[0:N/M~1]),
SLA[LCC: 2XLCC-1] (DLA,[LCC:2XLCC-1]) as the
second local complete cycle of of SLA;[0:N/M-1]
(DLA[0:N/M—11), and so on.

Definition 7: Given an s—t redistribution, for a
source processor P; (or destination processor P), a
class is defined as the set of array elements in an LCC
of SLA; with the same destination (or source)
processor. The class size is defined as the number
of array elements in a class.

In the following subsections, we will describe
how to derive the packing and unpacking information
for kr—r and r—kr array redistribution.

3.1 kr—r Redistribution
3.1.1 Send Phase

Due to the page limitation, we omit the proof of
lemmas presented in this paper.

Lemma 1: Given an s—t redistribution on A[1:N]
over M processors, SLA[m], SLA{m+LCC],
SLA;Im+2xLCC], ..., and SLA[m+N/MXLCC] have
the same destination processor, where 0 < i < M-1
and 0 <m < LCC-1.

Lemma 2: Given a kr—r redistribution on A[1:N]
over M processors, for a source processor P; and
array elements in SLA;[xXLCC:(x+1)XLCC~1], if the
destination processor of SLA;[xxLCC] is P;, then the
destination processors of SLA;[xxLCC: xxLCC+r-1],
SLA;[xXLCC+r: xxLCC+2r-1],..., SLA;[xxLCC +(k-
1)xr: xXLCC+kr—11 are Pj, Puogiet, mys -+ Prodgisk-1,
> respectively, where 0 < x S N/GCC-1and 0 <4, j
< M-1.

Given a kr—r redistribution on A[1:N] over M
processors, for a source processor P; if the
destination processor for the first array element of
SLA; is P;, according to Lemma 2, array elements in
SLA{O0:r~1], SLA[r:2r-1],..., and SLA,[LCC-
r:LCC-1] will be sent to destination processors P;,
Prodjst, Mys---» A0 Poogiieey, a)> TEspectively, where O
< i, j £ M-1. From Lemma 1, we know that
SLA[[0:r~1], SLAJLCC:LCC+r-1], SLA,[2xLCC:
2XLCC+r-11, ..., and SLA[(N/GCC-1)xLCC:
(NIGCC-1)XLCC+r—1] have the same destination
processor. Therefore, if we know the destination
processor of SLA;[0], according to Lemmas 1 and 2,
we can pack array elements in SLA; to messages
directly without computing the send data set and the
destination processor set.

Given a kr—>r redistribution over M processors,
for a source processor P;, the destination processor
for the first array element of SLA; can be computed by
the following equation:

nN=mod(rank(P;)xk,M) [¢))]
where 77 is the destination processor for the first array
element of SLA; and rank(P;) is the rank of processor
Pi.

3.1.2 Receive Phase

Lemma 3: Given a kr—r redistribution on A[1:N]
over M processors, for a source processor P; and
array elements in SLA;[xXLCC:(x+1)XLCC-1}, if the
destination processor of SG(SLA[agl),
SG(SLA{[a\]), ..., SG(SLAjlay,;]) is P;, then
SG(SLA[ap)), SG(SLA[a\]), ..., SG(SLAla,.]) are in
the consecutive local array positions of DLA;[0:N/M—
1], where 0 <4, j £ M-1, 0 £ x £ N/GCC-1, and

84

XLCC < ap<a;<a;<...<ay < (x+1)XLCC.

Lemma 4: Given a kr—r redistribution on A[1:N]
over M processors, for a source processor P;, if
SLAla] and SLA,[b] are the first array element of
SLA{XxXLCC:(x+1)xLCC-1] and
SLAT(x+1)xLCC:(x+2)XLCC~1], respectively, with
the same destination processor P; and SG(SLA[a]) =
DG(DLA[a]), then SG(SLA[b]) = DG(DLA[o+kr]),
where 0 <, j < M-1,0 < x < NGCC-2,and 0 £ &¢
< NIM-1.

Given a kr—r redistribution on A[1:N] over M
processors, for a destination processor P;, if the first
element of a message (assume that it was sent by
source processor P;) will be unpacked to DLA;{a] and
there are y array elements in DLA;[0:LCC~1] whose
source processor is P;, according to Lemmas 3 and 4,
the first y array elements of the message will be
unpacked to DLAj c:a+y-1], the second y array
elements of the message will be unpacked to
DLA [c+kr: o+kr+y-1], the third y array elements of
the message will be unpacked to DLA;[a+2kr:
o+2kr+y-1], and so on, where 0 <7, j < M-1 and 0
< a<N/M-1. Therefore, for a destination processor
Pj, if we know the values of y (the number of array
elements in DLA;[0:LCC-1] whose source processor
is P;) and o (the position to place the first element of
a message in DLA;), we can unpack elements in
messages to DLA; without computing the send data
set and the source processor set.

Given a kr—r redistribution on A[1:N] over M
processors, for a destination processor P;, the values
of a and y can be computed by the following
equations:

y= LM+ [mod((rank(P;)+M~
mod(rank(P;) X k, M)),M)<mod(k,M)1)xr (2)
a= (Lrank(P;) x kiM] +

[rank(P;) < mod(rank(P;) x k, M)1) xr (3)

Where rank(P;) and rank(P;) are the ranks of
processors P; and P, The notation “[]* in
equations (2) and (3) is called Iverson’s function. It
is defined as follows :
[f01 =1
[finl =0
false

when f(x) is true
when f(x) is

The kr—r redistribution algorithm is given as
follows.

Algorithm kr—r_redistribution(k, r, M)
/* Send phase */

1. i=MPI_Comm_rank(),

2. max_index = the length of the source local array
of processor P;;

3. the destination processor of SLA([0] is n = (kxi)
mod M;
/* Packing data sets */

4. index =1;lengths= 1, where 6=0, ..., M-1;

5 while (index <= max_index)

6. (6=m j=1

7. while ((j <= k) && (index <= max_index))
8 {I=1;

9 while ((I<=r) && (index <= max_index))

{ out_buffergllengths++] = SLA[index],
11. I++; index++ }
12. Jj++; if(6=M) 5= 0else 6++; }}
13. Send out_buffersto processor Ps, where d = 0,

vy M-1;
/* Receive phase */

14. max_cycle = max_index /| kr;

15. Repeat m = min (M, k) times

16. Receive message buffer_in; from source
processor P;;

17. Calculate the value of y for message
buffer_in; using Equation (2);

18. Calculate the value of « for message
buffer_in; using Equation (3);
/* Unpacking messages */

19. index=q; length=1; j=0;

20. while (j <= max_cycle)

21. { index = ot + jxkr; [=1;

22, while (! <=) { DLA[index++] =

23. buffer_in;[length++];

24. I++; 1}

25 o}

end_of_kr—r_redistribution

3.2 Method for r—kr Redistribution
3.2.1 Send Phase

Lemma 3: Given an r—kr redistribution on
A[1:N] over M processors, for a source processor P;
and array elements in SLA[xXLCC:(x+1)XLCC-1}, if
the destination processor of SG(SLA;[ao)),
SG(SLAa1]), ..., SG(SLAla..]l) is P;, then
SG(SLA[ap]), SG(SLAa,]), ..., SG(SLA/[a,.|]) are in
the consecutive local array positions of SLA;[0:N/M—
1], where 0 £ 4, j £ M-1, 0 £ x £ N/GCC-1, and
xXLCC £ agp<aj<a<...<a, ;< (x+1)xLCC.

Given an r—kr redistribution on A[1:N] over M
processors, for a source processor P;, if the
destination processor for the first array element of
SLA; is P; and there are u classes, Cy, Cy, Cs,..., and
C, in SLA,[0:LCC-1] (assume that the indices of local
array elements in these classes have the order C; < C,
< (3 < ...< C, and the destination processors of Cj,
C2, C3,..., and C“ are Pj], P,‘z, Pj3,.‘., and Pj”,
respectively), according to Lemma 5, we know that

h=J
J2=mod((ICXM) / kr + jy, M),
J3 = mod((|CoIxM) ! kr + jp, M),

ju = mOd((|C11~IIXM) ! kr +ju-]a M),

where 1 € u < min(k, M) and |C,], ..., |C,.,] are

85

class sizes of Cy, ..., C,.;, respectively. This means
that array elements SLA,[0:]C,|-1] will be sent to
destination processor P;;, array elements SLA/{|C| :
[Ci[+]C,—11 will be sent to destination processor
Pjy,..., and array elements SLA;[|C\|+|Col+...+C, 1] :
|CH+|Cyl+...4]C,)-11 will be sent to destination
processor P;,. From Lemma 1, we know that SLA[0:
Ci]-11, SLAJILCC:LCC+|Cy|-1], SLA;[2LCC:
2LCCH|Cy|-11,..., and SLA(NIGCC-
DXLCC:(N/GCC-1)x LCC+|{C;|-1] have the same
destination processor. Therefore, if we know the
destination processor of SLA;{0] and the values of
(ICil, Pj1). (Cal, Pp)...., and (IC,), Pj,), we can pack
array elements in SLA; to messages directly without
computing the send data set and the destination
processor set.

Given an r—kr redistribution on A[1:N] over M
processors, for a source processor P;, the destination
processor for the first array element of SLA; can be
computed by equation (5) and the number of array
elements in SLA;[0:LCC-1] whose destination
processor is P; can be computed by equation (4).
Equations (4) and (5) are given as follows:

IC)| = LM+ [mod(rank(P)+M~

mod(rank(P)) xk, M)),M)<mod(k,M)1)xr (4)
¢ = Lrank(P)Ik] (5)

Where rank(P;) and rank(P;) are the ranks of
processors P; and P;. The notation “[1* in equation
(4) is called Iverson’s function.

3.2.2 Receive Phase

Lemma 6: Given an r—kr redistribution on
A[1:N] over M processors, for a source processor P;
and array elements in SLA;[xXLCC:(x+1)xLCC-1], if
the destination processor of SG(SLA[ap)),
SG(SLAa\]), ..., SG(SLAjfa,.]) is P;, and
SG(SLA|[ag]) = DG(DLA]{v]), then SG(SLA/a.])
DG(DLA;[v+Mr)), SG(SLA[a»,])
DG(DLA;[v+2Mr]), .., and SG(SLA|a,.])
DG(DLA[v+(n/r—1)xMr]), where 0 < v < N/M-1.

Given an r—kr redistribution on A[1:N] over M
processors, for a destination processor P;, if the first
array element of the message (assume it was sent by
source processor P;) will be unpacked to DLA/{f] and
there are § array elements in DLA[0:LCC-1] whose
source processor is P;. According to Lemma 6, the
first & array elements of this message will be
unpacked to DLA{ B: B+r-11, DLA,[f+Mr: B+Mr+r—1],
DLA;|B+2Mr: B+2Mr +r-1], ..., and DLA]B+(d/r-
DXMr: +(8/r—1)xMr+r-1}; the second & array
elements of the message will be unpacked to
DLA{B+kr:B+kr+r—1]1, DLA[B+kr+Mr. B+kr+Mr+r—
1], DLA[B+kr+ 2Mr:B+kr+2Mr+r-1], .., and
DLA[B+kr+(&/r—1)xMr: f+kr+(8/r-1)xMr+r—1], and

so on, where 0 < B < N/M-1. Therefore, if we know
the values of & (the number of array elements in
DLA;[0:LCC-1] whose source processor is P;) and f8
(the position to place the first element of a message in
DLAj), we can unpack messages to DLA; without
computing the receive data set and the source
processor set. Given an r—kr redistribution on A[1:N]
over M processors, for a destination processor P, the
values of 8 and & can be computed by the following
equations:

&= /M I+ Umod((M+rank(P;)—

mod(rank(P;) xk,M)),M)<mod(k,M)1)xr (6)
B =mod(M + rank(P;) —
mod(rank(P)x k, M), M)X r 7

Where rank(P;) and rank(P;) are the ranks of
processors P; and P;. The notation “[1* in equation
(6) is called Iverson’s function.

The r—kr redistribution
described as follows.

algorithm can be

Algorithm r—kr_redistribution(k, r, M,)
/* Send phase */

1. i=MPI_Comm_rank();

2. max_index = the length of the source local array
of processor P;;

3. the destination processor of SLA;[0] is p=1i/k;

4. m=minlk, M); j =¢;

5. Calculate js, j3,... jms

6. Calculate class size ICj,} using Equation (4),

wherew =1, ..., m;

/* Packing data sets */
7. index=1; length;=1, where j=0, ..., M~1;
8 while (index <= max_index)

9. (i=1;

10. while((t<= m)&&{(index <= max_index))
11. {j=js I=1;

12. while (I <= IC})) &&

(index <= max_index))

13. { out_bufferlengthj++]
= SLA/{index++];

14. I++; }

15. ++; }}

16. Send out_buffer; to processor P;, where j = jj,
Joseos Jme
/* Receive phase */

17. max_cycle = max_index divided by kr

18. Repeat m = min (M, k) times

19. Receive message buffer_in; from source
processors P;.

20. Calculate the value of & for buffer_in; using
Equation (6);

21. Calculate the value of B for buffer_in; using
Equation (7);
/* Unpacking data sets */

22. index=f; length=1, j=0; count=0;

23. while (j <= max_cycle)

24, { count = 1, index = B + jxkr;

25 while (count<=8 { [=1;

26. while ([<= r) { DLA[index++]

86

-and Table 2.

= buffer_in{length++];

27. count ++; I++; }
28. index += (M-1)xr; }
29. J++ o}

end_of_r—kr_redistribution

4. Performance Evaluation and Experimental
Results

To evaluate the performance of the proposed
algorithms, we have implemented the proposed
algorithms on an 64-nodes IBM SP2 parallel machine
along with those proposed in [11, 12]. All of the
algorithms were written in C + MPI.

The experimental results were shown in Table 1
In Table 1 and Table 2, the ours
represents the algorithms proposed in this paper
while rhakur represents the algorithms proposed in
{11, 12]. Table 1 gives the execution time and the
percentages of the performance improvement of ours
over thakur for kr—r (and vice-versa) redistribution
with various array size and distribution factors. In
Table 1, the execution time of ours in BLOCK-
CYCLIC(10) to BLOCK-CYCLIC(2) redistribution
is about 11% to 23% faster than that of thakur. For
BLOCK-CYCLIC(2) to BLOCK-CYCLIC(10)
redistribution, the execution time of ours is about 5%
to 15% faster than that of thakur. For the cases of k
= 25, 50, and 100, we have similar observations as
those of Table 1 (Due to the page limitation, we did
not show the results here). Table 2 gives the
execution time and the percentages of the
performance improvement of ours over thakur for
BLOCK to CYCLIC (and vice-versa) redistribution.
From Table 2, we can see that the execution time of
ours is about 18% to 27% faster than that of thakur.

6. Conclusions

In this paper, we have presented -efficient
algorithms for kr—r and r—kr redistribution. The
most significant improvement of our algorithms is
that a processor does not need to construct the
send/receive data sets for a redistribution. Based on
the packing/unpacking information that derived from
the kr—r and r—kr redistribution, a processor can
pack/unpack array elements to (from) messages
directly. To evaluate the performance of our
methods, we have implemented our methods along
with Thakur’s methods on an IBM SP2 parallel
machine. The results show that the execution time
of our algorithms is approximately 5% to 27% faster
than that of Thakur’s methods.

References

[1] S. Chatterjee, J. R. Gilbert, F. J. E. Long, R.
Schreiber, and S.-H. Teng, “Generating Local
Address and Communication Sets for Data
Parallel Programs,” JPDC, Vol. 26, pp. 72-84,
1995.

[2] S. K. S. Gupta, S. D. Kaushik, C.-H. Huang, and
P. Sadayappan, “On Compiling Array
Expressions for Efficient Execution on
Distributed-Memory Machines,” JPDC, Vol. 32,
pp. 155-172, 1996.

S. Hiranandani, K. Kennedy, J. Mellor-Crammey,
and A. Sethi,” Compilation technique for block-
cyclic distribution,” In Proc. ACM Intl. Conf. on
Supercomputing, pp. 392-403, July 1994.

Edgar T. Kalns, and Lionel M. Ni, “Processor
Mapping Technique Toward Efficient Data
Redistribution, ” IEEE TPDS, vol. 6, no. 12 ,
December 1995.

S. D. Kaushik, C. H. Huang, J. Ramanujam, and
P. Sadayappan, “Multiphase array redistribution:
Modeling and evaluation,” In Proc. of IPPS, pp.
441-445, 1995.

K. Kennedy, N. Nedeljkovic, and A. Sethi,
“Efficient address generation for block-cyclic
distribution,” In Proc. of Intl. Conf. on
Supercomputing, Barcelona, pp. 180-184, July
1995.

Young Won Lim, Prashanth B. Bhat, and Viktor,
K. Prasanna, “Efficient Algorithms for Block-
Cyclic Redistribution of Arrays,” Proceedings of
the Eighth IEEE Symposium on Parallel and
Distributed Processing, pp. 74-83, 1996.

S. Ramaswamy and P. Banerjee, “Automatic
generation of efficient array redistribution
routines for distributed memory
multicomputers,” Frontier’'95: The Fifth
Symposium on the Frontiers of Massively
Parallel Computation, Mclean, VA. Pp. 342-349,
Feb. 1995.

(3]

(41

[5]

(6]

{7]

(81

[9] S. Ramaswamy, B. Simons, and P. Banerjee,
“Optimization for Efficient Array Redistribution
on Distributed Memory Multicomputers,” JPDC,
Vol. 38, pp. 217-228, 1996.

[10]J. M. Stichnoth, D. O’Hallaron, and T. R.
Gross,” Generating communication for array
statements: Design, implementation, and
evaluation,” JPDC, Vol. 21, pp. 150-159, 1994,

[11] R. Thakur, A. Choudhary, and G. Fox, “Runtime
array redistribution in HPF programs, ” Proc.
1994 Scalable High Performance Computing
Conf. , pp. 309-316, May 1994.

[12] Rajeev. Thakur, Alok. Choudhary, and .
Ramanujam, “Efficient Algorithms for Array
Redistribution, ” IEEE TPDS, vol. 7, no. 6 ,

JUNE 1996.
[13] David W. Walker, Steve W. Otto,
“Redistribution of BLOCK-CYCLIC Data

Distributions Using MPL” Technical Report
ORNL/TM-12999, Computer Science and
Mathematics Division, Oak Ridge National
Laboratory, 1995.

[14] A. Wakatani and M. Wolfe, “A New Approach
to Array Redistribution: Strip Mining
Redistribution,” In Proc. of Parallel Architectures
and Languages Europe, July 1994.

[15] A. Wakatani and M. Wolfe, “Optimization of
Array Redistribution for Distributed Memory
Multicomputers, ” In Parallel
Computing(submitted), 1994.

Table 1 : The percentages of the performance improvement of ours over thakur’s for BLOCK-CYCLIC(10) to
BLOCK-CYCLIC(2) redistribution and vice-versa.

BLOCK-CYCLIC(10) to BLOCK-CYCLIC(2) BLOCK~CVYCLIC(2) to BLOCK-CYCLIC(10)
SIZE ours thakur’s Improvement SIZE ours thakur’s Improvement
72000 12.621 14,423 12.5% 72000 15.378 17.45 11.9%
144000 14.662 17.536 16.4% 144000 22.358 24.465 8.6%

216000 17.541 19.719 11% 216000 27.905 29.504 5.4%
288000 18.364 23.71 22.5% 288000 29.602 32.457 8.8%
3600001 26.058 33.858 23% 360000 32.306 38.24 15.5%

Time unit : ms

Table 2 : The percentages of the performance improvement of ours over thakur’s for BLOCK to CYCLIC
redistribution and vice-versa.

BEOCK to CYCLIC CYCLIC to BLOCK
SIZE QUIS thakur’s | Improvement | SIZE QUIS thakur’s |Improvemen
72000 1 10.834 13.221 18.1% 72000 8.469 10.425 18.8%
144000 11.025 14.143 22% 440001 11.533 14.826 222%
2160001 15.121 19.223 21%. 2160001 17.258 21.122 183%
288000] 16.275 21.123 23% 2880001 20.072 25912 22.5%
3600001 19.897 27.287 27.1% 360000] 27977 35913 22.1%

Time unit : ms

87

