
Message Encoding Techniques For Efficient Array Redistribution’

Yeh-Ching Chung2 and Ching-Hsien Hsu

Department of Information Engineering
Feng Chia University, Taichung, Taiwan 407, ROC

Tel : 886-4-45 17250 x2706
Fax : 886-4-4515517

Email : ychung, chhsu@pine.iecs.fcu.edu.tw

Abstract- In this paper, we present message
encoding techniques to improve the performance of
BLOCK-CYCLlC(kr) to BLOCK-CYCLIC(r) {and vice
versa) array ’ redistribution algorithms. The
message encoding techniques are machine
independent and could be used with different
algorithms. By incorporating the techniques in
array redistribution algorithms, one can reduce the
computation overheads and improve the overall
performance of array redistribution algorithms. To
evaluate the performance of the techniques, we have
implemented the message encoding techniques into
some array redistribution algorithms on an IBM SP2
parallel machine. The experimental results show
that the execution time of array redistribution
algorithms with the message encoding techniques is
3% to 22% faster than those without the message
encoding techniques.

Keywords: array redistribution, distributed memory
multicomputers, message encoding.

1. Introduction

Array redistribution, in general, can be performed
in two phases, the send phase and the receive phase.
In the send phase, a processor Pi has to determine all
the data sets that will be sent to destination
processors, pack those data sets, and send those
packed data sets to their destination processors. In
the receive phase, a processor Pi has to determine all
the data sets that will be received from source
processors, receive those data sets, and unpack data
elements in those data sets to their corresponding
local array positions. This means that each
processor P, should compute the following four sets.

D Destination Processor Set (DPS[P,]) : the set of
processors to which Pi has to send data.

l Send Data Sets (U SDS[P;, P,]) : the sets
PcDPS[A]

of array elements that processor Pi has t? send to

its destination processors, where SDS[Pi, P,]
denotes the set of array elements that processor
Pi has to send to its destination processor Pj.

l Source Processor Set (SPS[Pj]) : the set of
processors from which Pi has to receive data.

l Receive Data Sets (U RDS[Pj, Pi]) : the
AESPS[fi]

sets of array elements that Pj has to receive from
its source processors, where RDS[Pj, Pi] denotes
the set of array elements that processor Pj has to
receive from its source processor P;.

Since array redistribution is performed at run-time,
there is a performance trade-off between the
efficiency of a new data decomposition for a
subsequent phase of an algorithm and the cost of
redistributing data among processors. Thus
efficient methods for performing array redistribution
are of great importance for the development of
distributed memory compilers. In this paper, we
present the message encoding techniques to improve
the performance of array redistribution algorithms.
For the message encoding techniques, in the send
phase, a source processor encodes the unpacking
information into messages that will be sent to its
destination processors. In the receive phase, for a
destination processor, according to the encoded
unpacking information, one can perform unpacking
process without calculating the RDS.

The paper is organized as follows. In Section 2,
a brief survey of related work will be presented. In
Section 3, the message encoding techniques for array
redistribution will be described in details. The
encoding and unpacking algorithms used by the
message encoding techniques for array redistribution
will be given in Section 4. The performance
evaluation will be presented in Section 5

2. Related Work

Gupta et al. [2] derived closed form expressions

’ The work of this paper was partially supported by NSC of R.O.C. under contract NSC-86-2213-E035-023.
’ The correspondence addressee.

150
0190-3918/97 $10.00 0 1997 IEEE

Proceedings of the 1997 International Conference on Parallel Processing (ICPP’97)
0-8186-8108-X 97 $10.00 � 1997 IEEE

to efficiently determine the send/receive
processor/data sets. Similar approaches was also
presented in [1,6,9,12]. Thakur et al. [lo, 1 l]
presented algorithms for run-time array redistribution
in HPF programs. In [S], Ramaswamy et al. used a
mathematical representation, PITFALLS, for regular
data redistribution. Similar approach in finding the
intersections between LHS and RHS of array
statements was also presented in [3].

Kaushik et al. [5] proposed a multi-phase
redistribution approach for array redistribution. In
[14], portion of array elements were redistributed in
sequence in order to overlap the communication and
computation. In [15], a spiral mapping technique
was proposed to reduce communication conflicts
when performing a redistribution. Kalns and Ni [4]
proposed a processor mapping technique to
minimizes the amount of data exchange for
redistribution. In [7], a generalized circulant matrix
formalism was proposed to reduce the
communication overheads redistribution. Walker et
al. [13] used the standardized message passing
interface, MPI, to express the redistribution
operations.

3. Message Encoding Techniques

In general, the BLOCK-CYCLIC(s) to BLOCK-
CYCLIC(t) redistribution can be classified into three
types,

l s is divisible by t, i.e. BLOCK-CYCLIC(s=kr)
to BLOCK-CYCLIC(t=r) redistribution,

l t is divisible by s, i.e. BLOCK-CYCLIC(s=r)
to BLOCK-CYCLIC(t=kr) redistribution,

. s is not divisible by t and t is not divisible by s.

To simplify the presentation, we use kr-+r, r+kr, and
s+t to represent the first, the second, and the third
types of redistribution, respectively, for the rest of
the paper.

Definition 1: Given a BLOCK-CYCLIC(s) to
BLOCK-CYCLIC(t) redistribution, BLOCK-
CYCLIC(s), BLOCK-CYCLIC(t), s, and t are called
the source distribution, the destination distribution,
the source distribution factor, and the destination
distribution factor of the redistribution , respectively.

Definition 2: Given an s+t redistribution on
A[l:N] over M processors, the source (destination)
local array of processor Pi (P,), denoted by
SLA,[O:N/M-I] (D~j[O:N/M-I]), is defined as the
set of array elements that are distributed to processor
Pi (P,) in the source (destination) distribution, where
O<i,j<M-1.

Definition 3: Given an s+t redistribution on
A[l:N] over M processors, the source (destination)
processor of an array element in A[l:N] or
DLAj[O:N/M-I] (SLAJO:N/M-I]) is defined as the
processor that owns the array element in the source
(destination) distribution, where 0 5 i, j 5 M-l.

Definition 4: Given an s-+t redistribution on
A[l:N] over M processors, we define SG : SLAi[m] +
A[k] is a function that converts a source local array
element SLAi[m] of P; to its corresponding global
array element A[k] and DC : DLAj[n] -+ A[l] is a
function that converts a destination local array
element DLAJn] of Pi to its corresponding global
array element A[l], where 1 I k, 1 < N and 0 < m, n
I NIM-1.

Definition 5: Given an s+t redistribution on
A[1 :N] over M processors, a global complete cycle
(CCC) of A[l:N] is defined as M times the least
common multiple of s and t, i.e., GCC=Mxlcm(s,t).
We define A[l:GCC] as the first global complete
cycle of A[l:N], A[GCC+1:2xGCC] as the second
global complete cycle of A[1 :NJ, and so on.

Definition 6: Given an s-+t redistribution, a local
complete cycle (XC) of a local array SLAj[O:N/M-I]
(or DLAj[O:NIM-11) is defined as the least common
multiple of s and t, i.e., LCC = lcm(s, t). We define
SLA;[O:LCC-I] (DLAj[O:LCC-11) as the first local
complete cycle of SLAJO:N/M-I] (DLAj[O:NIM-I]),
SLAi[LCC:2XLCC-I] (DLAJLCC~XLCC-I]) as the
second local complete cycle of of SLA,[O:N/M-I]
(DLAj[O:N/M-I]), and SO on.

3.1 The Message Encoding Technique for
kr+r Redistribution

Due to the page limitation, we omit the proof of
lemmas presented in this paper.

Lemma 1: Given an s+t redistribution on A[l:N]
over M processors, SLAJml, SLA;[m+LCC],
SLAi[m+2XLCC], and SLAi[m+N/MxLCC] have
the same destination processor, where 0 I i 5 M-l
andO<m<LCC-1.m

Lemma 2: Given a kr-+r redistribution on A[l:N]
over M processors, for a source processor Pi and
array elements in SLAj[xxLCC:(x+l)xLCC-I], if the
destination processor of SGWA;[ad),
SG(SLA,[a,]), SG(SLAi[apl]) is Pi, then
SG(SLAi[ao]), SG(SLAi[al]), SG(SLA;[a,l]) are in
the consecutive local array positions of DLAi[O:NIM-
l],whereO<x<NIGCC-1 andxxLCC<a0<a1<a2
< . . . < a,, < (x+l)xLCC. n

Lemma 3: Given a kr+r redistribution on A[1 :N]
over M processors, for a source processor P,, if
SLAi[a] and SLAi[b] are the first element in
SLA,[xxLCC: (x+1) x LCC -11 and SLA;[(x+l) x LCC:
(x+2) x LCC -11, respectively, with the same
destination processor Pj and SG(SLA,[a]) =
DG(DLA,[a]), then SG(SLA;[b]) = DG(DLAj[a + kr]),
whereO<x<NlGCC-2andO<crIN/M-1.m

Given a kr+r redistribution on A[l:N] over M
processors, for a source processor Pi, we assume that
there are yarray elements in SLA,[O:LCC-I] whose
destination processor is P,. In the receive phase, if
the first array element of the message will be

151

Proceedings of the 1997 International Conference on Parallel Processing (ICPP’97)
0-8186-8108-X 97 $10.00 � 1997 IEEE

unpacked to DLAj[Or], according to Lemmas 1, 2, and
3, the first y array elements of the message will be
unpacked to DLAj[cx:~+y--11, the second y array
elements of the message will be unpacked to
DLAj[a+kr:or+kr+y-11, the third y array elements of
the message will be unpacked to
DLAj[cw+2kr:a+2kr+y-11, and so on. Therefore, if
we know the values of 01 and yin the send phase and
encode the values of (X and y as the first and the
second elements of a message, respectively, then we
can perform the unpacking process without
computing the receive data sets in the receive phase.

Given a krdr redistribution on A[I:N] over M
processors, for a source processor Pi, the values of 01
and ycan be computed by the following equations:

i

LraidFf, xk/MJ xr if fzzn4tB~mBxkM

a= ~m&(fTjxk/M]+l)Xr OtbaMise
(1)

where rank(Pi) and rank(Pj) are the ranks of
processors P; and Pj, respectively.

3.2 The Message Encoding Technique for
r+kr Redistribution

Lemma 4: Given a rjkr redistribution on A[1 :NJ
over M processors, for a source processor Pi and
array elements in SLAi[x~LCC:(x+l)~LCC-l], if the
destination processor of WSMad),
SG(SLAJa,J), SG(SLA;[a,r]) is Pj, and
SG(SLAi[ao]) = DG(DLAj[a]), then SG(SLAi[a,]) =
DG(DLAj[a + Mr]), SG(SLAJa2,]) = DG(DLAj[a +
2Mr]), and SG(SLAi[a,,]) = DG(DLAj[a + (yfr-1)
x Mr]), where 0 5 a I N I M-l, 0 < x < NIGCC-1 and
xXLCC 5 aO< aI < a2 < . . . < ay-, < (x+l)xLCC. q

Given an r+kr redistribution on A[l:N] over M
processors, for a source processor Pi, we assume that
there are y array elements in SLAi[O:LCC-I] whose
destination processor is Pj. In the receive phase, if
the first array element of the message will be
unpacked to DLAj[pJ, according to Lemmas 1, and 4,
the first y array elements of the message will be
unpacked to DLA,[p:p+r-I], DLAj[P + Mr : p + Mr +
r - 11, DLAj[p + 2Mr : fl + 2Mr + r - 11, and
DLAj[fi+(ylr-l)xMr:B+(ylr-l)xMr+r-I]: the second
yarray elements of the message will be unpacked to
DLA,[P+kr:P+kr+r-l],DLA@+kr+Mr:fl+
kr+Mr+r-l],DLAj[P+kr+2Mr:P+kr+2Mr+
r - I], and DLAj[p + kr + (y/r-l) x
Mr:P+kr+(ylr-l)xMr+r-11, and so on. Therefore,
if we know the values of p and y p, then we can
perform the unpacking process without computing
the RDS in the receive phase.

Given an r+kr redistribution on A[l:N] over M
processors, for a source processor Pi, the value of y
can be computed by Equation 2. The value of p can
be computed by the following equation,

p = mod(rank(Pi) + M -
mod(rank(Pj) X k, M). M) X r (3)

4. Incorporate Message Encoding Techniques
with Array Redistribution Algorithms

To incorporate the message encoding techniques
with the kr+r and r+kr redistribution algorithms,
we need the following four algorithms.

Algorithm kr-to-r-encoding(k, r, M)
1. For each destination processor Pj in DPS[PJ do
2. (calculate cx and yusing Equations

1 and 2, respectively;
3. send-mesj[O] = lo;
4. send-mesj[l] = z }

end-of -kr-to-r-encoding

Algorithm kr-to-r-unpacking(k, r, M, N)
1. Pj receives a message recv-mesi from source

processor Pi
2. a = rcev-mesi[O]; y= recv-mesi[I];
3. lengthi = 2; cycle = N I (M x krj;

count = 0; index = Q - kr;
4. while (count < cycle)
5. (index += kr ;
6. for(x=O;xcy;x++)
7. DLAj[index+x]

= recv-mesi[lengthi++];
8. count++; }

end-of-kr-to-r-unpacking

Algorithm r-to-kr-encoding(k, r, M)
1. For each destination processor Pj in DPS[P;] do
2. (calculate p and yusing Equations

3 and 2, respectively;
3. send-mesj[O] = p;
4. send-mesj[l] =y }

end-of-r-to-kr-encoding

Algorithm r-to-kr-unpackingck, r, M, N)
1. P, receives a message in recv-mes, from source

processor P,

3”:
p = recv-mes,[O]; y= recv-mesi[l];
lengthi = 2; cycle = N I (M x kr);

Z:
count = 0; index = p - kr;
local-index = 0;

6. while (count i cycle)
7. { index += kr ;

;:
local-index = index - M x r;
for (x = 0 ; x < yl r’; x++)

10. (local-index += M x
11. for(y = 0 J i r. ~-2) ;’ 3
12. l&al~array(local-indexty)

= recv-mes,(length,++) ;)
13. count ff; }

end-of-r-to-kr-unpacking

5. Performance Evaluation and Experimental
Results

To evaluate the performance of the proposed

152

Proceedings of the 1997 International Conference on Parallel Processing (ICPP’97)
0-8186-8108-X 97 $10.00 � 1997 IEEE

message encoding techniques, we have implemented
the message encoding techniques into algorithms
presented in [lo, 1 l] for kr+r and r+kr
redistribution on a 16-nodes SP2. We called
algorithms with and without the message encoding
techniques MET-REDIS and REDIS, respectively.

Table 1 gives the execution time and the
percentages of the performance improvement of
MET-REDIS over REDIS. The execution time of
redistribution in the synchronous communication
model is about 15% to 22% faster than that of REDIS.
In the asynchronous model, the execution time of
redistribution is about 3% to 7% faster than that of
REDIS. We have noted that the improvement
percentage of the synchronous model is greater than
that of the asynchronous model. This is because
that the computation and communication can be
overlapped in the asynchronous model, but can not be
overlapped in the synchronous model. For the cases
of k = 10, 20, 50, and BLOCK to CYCLIC (and vice-
versa) redistribution, we have similar results (Due to
the page limitation, we did not show the results here).

6. Conclusions

In this paper, based on kr-w and r+kr
redistribution, we have developed the message
encoding techniques. The message encoding
techniques are machine independent and could be
used with different array redistribution algorithms.
BY incorporating the techniques in array
redistribution algorithms, one can reduce the
computational overheads. The experimental results
show that the execution time of array redistribution
algorithms with the message encoding techniques is
3% to 22% faster than those without the message
encoding techniques.

References

[II

PI

[31

S. Chatterjee, J. R. Gilbert, F. J. E. Long, R. Schreiber,
and S.-H. Teng, “Generating Local Address and
Communication Sets for Data Parallel Programs,”
JPDC, Vol. 26, pp. 72-84, 1995.
S. K. S. Gupta, S. D. Kaushik, C.-H. Huang, and P.
Sadayappan, “On Compiling Array Expressions for
Efficient Execution on Distributed-Memory
Machines,” JPDC, Vol. 32, pp. 155172, 1996.
S. Hiranandani, K. Kennedy, J. Mellor-Crammey, and
A. Sethi,” Compilation technique for block-cyclic

I41

[51

[61

I71

PI

I91

distribution,” In Proc. ACM Inrl. Conf. on

Supercomputing, pp. 392-403, July 1994.
E. T. Kalns, and L. M. Ni, “Processor Mapping
Technique Toward Efficient Data Redistribution, ”
IEEE TPDS, vol. 6, no. 12 , December 1995.
S. D. Kaushik, C. H. Huang, J. Ramanujam, and P.
Sadayappan, “Multiphase array redistribution:
Modeling and evaluation,” In Proc. of IPPS, pp. 441-
445, 1995.
K. Kennedy, N. Nedeljkovic, and A. Sethi, “Efficient
address generation for block-cyclic distribution,” In
Proc. of Intl. Conf. on Super-computing, Barcelona, pp.
180-184, July 1995.
Y.-W. Lim, Prashanth B. Bhat, and Viktor, K.
Prasanna, “Efficient Algorithms for Block-Cyclic
Redistribution of Arrays,” Proceedings of the Eighth
IEEE Symposium on Parallel and Distributed
Processing, pp. 74-83, 1996.
S. Ramaswamy, B. Simons, and P. Banerjee,
“Optimization for efficient array Redistribution on
Distributed Memory Multicomputers,” JPDC, Vol. 38,
pp. 217-228, 1996.
J. M. Stichnoth, D. O’Hallaron, and T. R. Gross,”
Generating communication for array statements:
design, implementation, and evaluation,” JPDC, Vol.
21, pp. 150-159, 1994.

[lo] R. Thakur, A. Choudhary, and G. Fox, “Runtime array
redistribution in HPF programs, ” Proc. 1994 Scalable
High Performance Computing Conf. , pp. 309-316,
May 1994.

[l 11 Rajeev. Thakur, Alok. Choudhary, and J. Ramanujam,
“Efficient Algorithms for Array Redistribution, ” IEEE
TPDS, vol. 7, no. 6, JUNE 1996.

[12] A. Thirumalai and J. Ramanujam, “HPF array
statements: Communication generation and
optimization,” 3th workshop on Languages,
Compilers and Run-time system for Scalable
Computers, Troy. NY, May 1995.

[13] David W. Walker, Steve W. Otto, “Redistribution of
BLOCK-CYCLIC Data Distributions Using MPI,”
Technical Report ORNUTM- 12999, Computer
Science and Mathematics Division, Oak Ridge
National Laboratory, 1995.

[14] A. Wakatani and M. Wolfe, “A New Approach to
Array Redistribution: Strip Mining Redistribution,” In
Proc. of Parallel Architectures and Languages
Europe, July 1994.

[15] A. Wakatani and M. Wolfe, “Optimization of array
redistribution for distributed memory multicomputer, ”
In Parallel Computing(submitted), 1994.

Table 1 : The percentages of the performance improvement of MET-REDIS over REDIS.

Time unit : ms

Proceedings of the 1997 International Conference on Parallel Processing (ICPP’97)
0-8186-8108-X 97 $10.00 � 1997 IEEE

