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Abstract

In  many scientific applications, dynamic array
redistribution is usually required to enhance the
performance of an algorithm. In this paper, we present a
generalized basic-cycle calculation (GBCC) method to
efficiently perform a BLOCK-CYCLIC(s) over P processors
to BLOCK-CYCLIC(t) over (Q  processors array
redistribution.  In the GBCC method, a processor first
computes the source/destination processor/data sets of array
elements in the first generalized basic-cycle of the local
array it owns. A generalized basic-cycle is defined as
lem(sP, tQ)/(gcd(s,t)xP) in the source distribution and
lem(sP, tQ)/(gcd(s,t)XQ) in the destination distribution.
From the source/destination processor/data sets of array
elements in the first generalized basic-cycle, we can
construct packing/unpacking pattern tables. Based on the
packing/unpacking  pattern tables, a processor can
pack/unpack array elements efficiently. To evaluate the
performance of the GBCC method, we have implemented this
method on an IBM SP2 parallel machine, along with the
PITFALLS method and the ScaLAPACK method. The cost
models for these three methods are also presented. The
experimental  results show that the GBCC method
outperforms the PITFALLS method and the ScalAPACK
method for all test samples. A brief description of the
extension of the GBCC method to multi-dimensional array
redistributions is also presented.

Keywords: redistribution, generalized basic-cycle
calculation method, distributed memory multicomputers.

1. Introduction

The data-parallel programming model has become a
widely accepted paradigm for programming distributed-
memory parallel computers. To efficiently execute a data-
parallel program on a distributed memory multicomputer,
appropriate data decomposition is necessary. Many data-
parallel programming languages such as High Performance
Fortran (HPF), Fortran D and High Performance C (HPC)
provide compiler directives for programmers to specify
regular array distribution, namely, BLOCK, CYCLIC, and
BLOCK-CYCLIC. In many scientific programs, it is
necessary to change distribution fashion of a program at
different phases in order to achieve better performance.

Examples are multidimensional fast Fourier transform, the
Alternative Direction Implicit (ADI) method for solving two-
dimensional diffusion equations, linear algebra solvers, etc.
Since array redistribution is performed at run-time, there is a
performance trade-off between the efficiency of the new data
distribution for a subsequent phase of an algorithm and the
cost of redistributing array among processors.  Thus,
efficient methods for performing array redistribution are of
great importance for the development of distributed memory
compilers for data-parallel programming languages. Many
methods for performing array redistribution were proposed in
the literature [2, 4, 6, 10-15]. Due to the page limitation,
we will not describe these methods here. The detail
information about these works can be found in [2].

In [2], we proposed a basic-cycle calculation technique to
efficiently perform a BLOCK-CYCLIC(s) to BLOCK-
CYCLIC(¢) redistribution on the same processor set. In
HPF, it supports array redistribution with arbitrary source
and destination processor sets. Based on the spirit of the
basic-cycle calculation technique, in this paper, we present a
generalized basic-cycle calculation (GBCC) method to
efficiently perform a BLOCK-CYCLIC(s) over P processors
to BLOCK-CYCLIC(#) over Q processors array redistribution.
In the GBCC method, a processor first computes the
source/destination processor/data sets of array elements in
the first generalized basic-cycle of the local array it owns.
A generalized basic-cycle is defined as lem(sP, tQ)/(gcd(s, t)
x P) in the source distribution and lem(sP, tQ)/(gecd(s, t)x Q)
in the destination distribution. From the source/destination
processor/data sets of array elements in the first generalized
basic-cycle, we can construct packing/unpacking pattern
tables. Since each generalized basic-cycle has the same
communication pattern, based on the packing/unpacking
pattern tables, a processor can pack/unpack array elements
efficiently.

To evaluate the performance of the GBCC method, we
have implemented this method on an IBM SP2 parallel
machine, along with the PITFALLS method and the
ScalLAPACK method. Both theoretical and experimental
performance analysis were conducted for these three methods.
The theoretical performance analysis shows that the indexing
cost of the GBCC method is less than those of the PITFALLS
method and the  ScalAPACK  method. The
packing/unpacking cost of the GBCC method is less than or



equal to those of the PITFALLS method and the ScaLAPACK
method. The experimental results show that the GBCC
method outperforms the PITFALLS method and the
ScalAPACK method for all test samples. A brief
description of the extension of the GBCC method to multi-
dimensional array redistributions is also presented.

2. Preliminaries

To simplify the presentation, we use (s, P)-(Z, Q) to
represent the redistribution of BLOCK-CYCLIC(s) over P
processors to BLOCK-CYCLIC(¢) over Q processors and
N denotes the global array size for the rest of the paper.
We also assume that all array elements and processors are
indexed starting from 0.

Definition 1: Given a (s, P)-(z, Q) redistribution,
BLOCK-CYCLIC(s), BLOCK-CYCLIC(#), s, ¢, P and Q
are called the source distribution, the destination
distribution, the source distribution factor, the destination
distribution factor, the number of source processors and
the number of destination processors of the redistribution ,
respectively.

Definition 2: Given a (s, P) - (¢, Q) redistribution on a
one-dimensional array A[0:N—1], the source local array of
processor P;, denoted by SLA;[0:N/P—1], is defined as the
set of array elements that are distributed to processor P; in
the source distribution, where i = 0 to P-1. The
destination local array of processor (), denoted by
DLA;[0:N/Q—-1], is defined as the set of array elements that
are distributed to processor ¢; in the destination
distribution, where j = 0 to O-1.

Definition 3: Given a (s, P)— (7, Q) redistribution on a
one-dimensional array A[0:N—1], the source processor of
an array element in A[0:N—1] or DLA;[0:N/Q—-1] is defined
as the processor that owns the array element in the source
distribution, where j = 0 to Q-1. The destination
processor of an array element in A[0:N-1] or
SLA,[0:N/P-1] is defined as the processor that owns the
array element in the destination distribution, where i = 0
to P-1.

Definition 4: Given a (s, P) - (¢, Q) redistribution on a
one-dimensional array A[0:N—1], the generalized basic-
cycle (GBC) is defined as GBC = fems x P.1xQ) in the

gcdis,tiXP

lcm(sxP,tXQ)
gcdis,tixQ
destination distribution. = We define SLA,[0:GBC-1]
(DLA;[0:GBC-1]) as the first generalized basic-cycle of a
source (destination) local array of processor P; (Q)),
SLA[GBC2XGBC-1] (DLAJGBC:2xGBC-1]) as the
second basic-cycle of a source (destination) local array of
processor P; (©;), and so on.

Definition S: Given a (s, P) - (¢, Q) redistribution, a
generalized basic-cycle of a source (destination) local
array can be divided into GBC/s (GBC/t) blocks. We
define those blocks as the source (destination) sections of

source distribution and GBC = in the

a generalized basic-cycle of a source (destination) local
array.

3. The GBCC method for Array Redistribution

The main idea of the GBCC method is based on that
every generalized basic-cycle of a local array has the same
communication pattern. For example, Figure 1 shows a
(4, 3)-(3, 2) redistribution on a one-dimensional array
with 48 elements. According to Definition 4, the
generalized basic-cycle in the source distribution and the
destination distribution of the redistribution is 4 and 6,
respectively. In Figure 1, the local array indices are
represented as italic numbers while the global array
indices are represented as normal numbers. There are
four generalized basic-cycles in each source/destination
local array. For each source (destination) local array,
array elements in the kth position of each generalized
basic-cycle have the same destination (source) processor,
i.e., all of them will be sent to (received from) the same
destination (source) processor during the redistribution,
where £ =0 to GBC—1. This observation shows that each
generalized basic-cycle of a local array has the same
communication pattern.

Figure 1: A (4, 3)-(3, 2) redistribution on a one-
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dimensional array with N=48 elements.

Another example of a (6, 4) - (4, 3) redistribution on
A[0:95] is shown in Figure 2(a). The generalized basic-
cycle in the source distribution and the destination
distribution of the redistribution is 3 and 4, respectively.
However, the observation that we obtained from Figure 1
(each generalized basic-cycle of a local array has the same
communication pattern) cannot be applied to the case
shown in Figure 2(a) directly. For example, the
destination processors of the second array elements in the
first and the second generalized basic-cycles of the source
local array of processor P, are Q, and (;, respectively.
The reason, which the observation cannot be applied
directly, is that the value of gcd(6, 4) is not equal to one.
By grouping every gcd(6, 4) global array indices of array
A4 to a meta-index, array A[0:N—1] can be transformed to a
meta-array B[0:N/gcd(6, 4)—1], where B[k] = {A[kXgcd(6,
D], ..., A[(k+1)xgcd(6, 4)—-1]} and £ = 0 to N/gcd(6, 4)—1.
Then, the observation that we obtained from Figure 1 can
be held if we use array B for the redistribution. An
example of using meta-array for the array redistribution of
Figure 2(a) is shown in Figure 2(b).



In the following discussion, we assume that a (s,
P) - (t, Q) redistribution on A[0:N—1] is given. We also
assume that ged(s, ) is equal to 1. If ged(s, ) is not
equal to 1, we use s/gcd(s, t) and #/gcd(s, t) as the source
and destination distribution factors of the redistribution,
respectively.

Bawres. BLOCK=CYCLL Db

Figure 2: (a) A (6, 4) - (4, 3) redistribution with N =96. (b)
An example of using a grouped meta-array for the
redistribution in (a).

3.1 Send Phase

Each generalized basic-cycle of a local array has the
same communication pattern. Therefore, each source
processor only needs to compute the send processor/data
sets on the first generalized basic-cycle of the local array
that it owns. Then, based on the send processor/data sets
of the first generalized basic-cycle, it can pack array
elements into messages and send messages to their
corresponding destination processors.

Given a (s,P) - (¢, Q) redistribution on A[0:N—-1], the
destination processor of array element SLA[k] in
SLA,[0:GBC-1] of source processor P; can be determined
by the following equations,

sgindex[(k): @/SBSXP+i><s+m0d(k,s) (1)

dp; (sgindex,. (k)) = mod(@gindex, (k)/t[Q) (2)

where & = 0 to GBC-1. The function sgindex;,(k)
converts the local array index of an array element in a
source local array to its corresponding global array index,
i.e., SLA[k] = Alsgindex(k)]. The function
dpi(sgindex;(k)) is used to determine the destination
processor of the global array element A[sgindex(k)].

If the value of GBC is large, it may take a lot of time
to compute the destination processor of every array
element in a generalized basic-cycle by using Equations (1)
and (2). Since array elements in a source section have

consecutive global array indices, for a source processors
P,, if the destination processor of SLA,[0:r—1] is Q;, then
the destination processors of  SLA|rr+t—1],
SLA,[r+t:r+2¢-1], ..., and  SLA,[r+Us—r)/tCkes—1] are
Qmod(jﬂ,(j) H Qmod(j+2‘(_)) H Tt and Qmod(j+ [(l\—r)/IEQ) 4
respectively, where 1 < r < ¢. For example, Figure 3
shows the send processor/data sets of the first generalized
basic-cycle of source processors for a (10,3)-(3.4)
redistribution shown in Figure 2. In Figure 3, for source
processor P, the destination processor of SLA,[0:r—1] =
SLA[0:1] is Q; = Q;, where r = 2 and j = 3. The
destination processors of SLA[rir+t—=1] = SLA,[2:4],
SLA[r+t:r+2t=11 = SLA[5:7], and SLA,[r+Us—r)/(Ckts—1]
= SLAI[SQ] arc Qmod(/'ﬂ,Q) = QO’ Qmod(_j+2,Q) = Ql and
Opoa(jstts—r)ip) = oo respectively.  Therefore, if we

know the destination processor of the first array element
of a source section and the value of », we can determine
the send processors/data sets in a source section. To
determine the global array index of the first array element
of a source section, Equation (1) can be simplified as
follow,

sgindex, (k):k XP+ixs (3)

where £ is the local array index of the first array
element of a source section. The value of r can be
determined by the following equation,

7= (@gindex,. (k)/ i l)xt - sgindex, (k) 4)

Since a generalized basic-cycle has GBC/s source
sections, Equations (2), (3), and (4) only need to be
performed GBC/s times. Then the send processor/data
sets of a generalized basic-cycle can be obtained.
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Figure 3: The send processor/data sets of the first
generalized basic-cycle for a (10,3) - (3,4) redistribution.

From the send processor/data sets, we can pack array
elements into messages and send messages to their
corresponding destination processors. The naive way to
pack array elements into messages is to copy them to
messages one element at a time according to the send
processor/data sets. We define the operation of moving a
block of data between a local array and a message as a
data-movement operation. Since packing is a sequence
of data-movement operations, if the local array size is
large, this naive method may produce high packing cost.
If we can reduce the number of data-movement operations,
the packing cost can be reduced. From the indexing



method described above, for a source processors P, if the
destination processor of SLA,[0:r—1] is (), then the
destination processors of SLA;[r:r+1-1],
SLA,[r+t:r+2¢-1], ..., and  SLA,[r+Us—r)/tCkes—1] are

Qmod(_[ﬂ,Q) > Qnmd(_/’+2,Q) > e and Qmod(_[+ m.\’—l‘)/l EQ) >

respectively, where 1 < » < 7. For each source processor
P, we can construct a packing pattern table PPT;,[0:Q—1]
to describe the above send processor/data sets. For
example, for the send processor/data sets of the first
generalized basic-cycle shown in Figure 3, for source
processor Py, its corresponding packing pattern table is
give as follows:

PPT[0] = {{2. 3}. {18. 2}}.
PPT[1] = {{5. 3}. {10. 2}}.
PPT[2] = {{8. 2}, {12. 3}}.
PPTH[3] = {{0. 2}. {15. 3}}

Each entry of a packing pattern table contains a list of
descriptors. Each descriptor stores information of the start
position and the number of array elements to be packed when
performing a data-movement operation. A descriptor is of
the form {pos, len}, where pos denotes the start position and
len is the number of array elements to be packed. It is
possible that the last array element of source section m and
the first array element of source section m+1 have the same
destination processor. In our implementation, we will
combine the descriptors corresponding to these two array
elements to a descriptor. Based on the above packing
pattern table PP7,[0:3], when packing array elements whose
destination processor is Q, into message,, the entry PPT[0]
= {{2, 3}, {18, 2}} will be used. According to PPT,[0] =
{{2, 3}. {18, 2}}, source processor P; will pack array
elements SLA[2:4] and SLA[18:19] in the first generalized
basic-cycle of SLA; into messageo[0:2] (descriptor {2,3}) and
messageo[3:4] (descriptor {18,2}), respectively. Array
elements SLA,[2+GBC:4+GBC] and SLA,[18+GBC:19+GBC]
in the second generalized basic-cycle of SLA; will be packed
into messageo[5:7] (descriptor {2,3}) and message,[8:9]
(descriptor {18,2}), respectively, and so on. Based on the
packing pattern table, the total number of data-movement
operations performed by each source processor P; is equal to
(the number of descriptors in PPT,;[0:0—1]) % (the number of
generalized basic-cycles in SLA;) which is much less than that
of the naive method.

3.2 Receive Phase

Similar to the send phase, given a (s,P)-(, Q)
redistribution on A[0:N—1], for destination processor Q,
the source processor of array element DLA;[k] in
DLA;[0:GBC-1] can be determined by the following
equations:

rgindex (k) =[R/txexQ+ jxt+ mod(k, t) Q)
sp; (rgindexj (k)= mod(@gindexj k)/stlP) (o)

rgindex , (k)=kxQ+ jxt (7

where £ is the local array index of the first array element of a
source section. The algorithm of the GBCC method is given
as follows.

Algorithm GBCC (s, P, t, Q)
/* Send Phase */

1. i=get myrank of source processors();

2. call PPT construction(i, s, P, t, Q);

3. forj=0to Q-1

4. if ¢;> 0 then

5. pack data from source local array to a message
according to PPT[j];

6. send message to Qj;

7. endif

8. endfor

/* Receive Phase */
9. j=get myrank_of destination_processors();
10. call UPT construction(j, s, P, t, Q);
11.fori=0to P-1
12.  if¢; > 0 then

13. receive message from P;

14. unpack received message to destination local
array according to UPT|[i];

15.  endif

16. endfor

17. wait for all communication;

End of GBCC

3.3 The GBCC method for Multi-Dimensional
Array Redistribution

The GBCC method can be easily extended to perform
multi-dimensional array redistributions. In the send
phase, the packing pattern table for each dimension is
calculated by using the GBCC method. Based on the
packing pattern tables, array elements that will be sent to
the same destination processor are packed dimension by
dimension starting from the first (last) dimension if array
is in column-major (row-major). In the receive phase,
the unpacking pattern table for each dimension is
calculated by using the GBCC method. Based on the
unpacking pattern tables, elements in a message that was
received from a source processor are unpacked to their
corresponding positions dimension by dimension starting
from the first (last) dimension if array is in column-major
(row-major).

The algorithm for the GBCC method to perform
multi-dimensional array redistribution is given as follows:

Algorithm GBCC MD (s[], P[], t[1, OI1)
/* Send Phase */
i[]=ranks_of each dimension();
for d = 0 to number of dimension

call PPT construction(i[d], s|d], Pld], t[d], O[d]);

endfor

W =



W

forj[]=0to O[] - 1

if ¢;;; > 0 then
7. pack data from source local array to a message
according to PPTy[j[11;

[o)}

8. send message to Qjp;
9. endif
10. endfor

/* Receive Phase */
11. jllFranks_of each dimension();
12. for d = 0 to number of dimension
13. call UPT construction(j|d], s[d], P[d], t[d], Old]);
14. endfor
15. for i[] =0 to P[]-1
16. if Cin > (0 then

17. receive message from Py,

18. unpack received message to destination local
array according to UPT [i[]];

19. endif

20. endfor

21. wait for all communication,
End of GBCC _MD

4. Experimental Results

To evaluate the performance of the GBCC method,
we compare the proposed method with the PITFALLS
method and the ScalLAPACK method. Both theoretical
and experimental performance evaluations were
conducted. We first develop cost models for these three
methods and analyze their performance in terms of the
indexing and the packing/unpacking costs. The cost
models developed for the P/TFALLS method and the
ScaLAPACK method are based on algorithms proposed in
[13] and [12], respectively. We then execute these three
methods on an IBM SP2 parallel machine and use the cost
models to analyze the experimental results.

4.1 Cost Models

Given a (s, P)-(t, Q) redistribution on a one-
dimensional array A[0:N—1], the time for an algorithm to
perform the redistribution, in general, can be modeled as
follow:

T= TCO”]]). + TCO}‘I"H. (8)

For the same redistribution, the total number of
messages and the size of messages sent and received by
each processor are the same for these three methods.
Although they all use asynchronous communication
schemes, we assume that the communication costs of these
three methods are the same in our theoretical model.
Therefore, we will focus on the analysis of the
computation costs of these three methods.

The computation cost consists of the indexing cost
and the packing/unpacking cost. The indexing cost is the
time to construct the send/receive processor/data sets for a

redistribution. The packing/unpacking cost is the time to
pack and unpack array elements. We have the following
equation,

Tcomp — Lindex + T(un)paclo (9)

where T and Ty are the indexing cost and the
packing/unpacking cost of a redistribution, respectively.
In our analysis, the packing/unpacking cost is represented
in terms of the number of data-movement operations.
For the PITFALLS method, the indexing cost for a
processor to perform the efficient FALLS intersection
algorithm [13] is

Tindex(PlTFALLS)=

Oﬂ/cm(s x Pt XQ) <O+ /cm(s XP,tXQ)
Hmin(s,t XQ)XP min(t,s XP)XQ

xP% (10)

The packing/unpacking cost of the PITFALLS method is

[/P+ N
Tmpack PITFALLS) = 0%—?% (1)
min S,t

For the ScalAPACK method [12], the indexing cost
for a processor to determinate the send processor/data sets
is

Tindex(ScalLAPACK)=

HenlsxP.1x0) +/cm(sxP>fo)xpE (12)

Hmin(s,th)XP /7zin(t,s><P)><Q
The packing/unpacking cost of the ScaLAPACK method is

P+N
T(ml)pm:k(ScaLAPACK) = O%_/g E ( 13)
min\s,

From Equations (10) to (13), we can see that the
Scal APACK method and the PITFALLS method have the
same indexing and packing/unpacking time complexities.

For the GBCC method, according to the algorithm
presented in Sections 3.1 and 3.2, the indexing cost is

: _ ﬂlcm(sxP,th) lcm(sxP,th)
Tinaed GBCC) =0 min(s,t)XP * min(s,t)XQ (14)

According to Sections 3.1 and 3.2, the
packing/unpacking cost of the generalized basic
calculation method can be classify into three classes,
s>1xQ, t > sxP, and otherwise. For the first class s > 1xQ,
array elements that have the same destination processors
in the same source section will have consecutive local
array indices in its corresponding destination local array.

Therefore, LQ data-movement operations are needed to
X

pack those array elements to a message and one data-
movement operation is needed to unpack those array
elements to their corresponding local array positions.
Figure 4 gives an example to show this behavior. For the



second class ¢t > sxP, there are similar behaviors in the
packing/unpacking.
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Figure 4: Given a (24, 3)- (2, 2) redistribution, the
shadowed array elements in a source section of SLA4, will
be sent from P, to Q,. There are six data-moving
operations and one data-moving operation in the sending
phase and the receiving phase, respectively.

The indexing costs of these three classes are given as

follows:
EO%M + MH if s>t X Q
0 t S/Q
Tomma GBCO) = %@M +N—/QH (>5x0  (15)
0 t/P N
EO /P +NJQ otherwise
E min\s,t

From the above analysis, the indexing cost of the
GBCC method is less than that of the PITFALLS method
and the Scal APACK method. The packing/unpacking
cost of the GBCC method is less than or equal to that of
the PITFALLS method and the ScalAPACK method.
Table 1 summarizes the indexing costs and the
packing/unpacking costs of these three methods.

4.2 Experimental Results

To verify the performance analysis presented in
Section 4.1, the GBCC method, the PITFALLS method,
and the ScalLAPACK method were implemented on an
IBM SP2 parallel machine. All algorithms were written
in the single program multiple data (SPMD) programming
paradigm with C+MPI codes. Based on the values of s, 7,
P, and Q in a (s, P)- (7, Q) redistribution, we have the
following three cases:

case 1: s < xQ and ¢ < sxP,
case 2: s > txQ or t > §xP,
case 3: P=kP’, Q = kQ’ where ged(P’, Q’)=land k2 1,

For each case, different redistributions were used as
test samples. Each test sample was executed 10 times.
The mean time for the 10 tests was used as the time of a
test sample. We also give experimental results for two-
dimensional array redistributions.

Table 1: The indexing costs and the packing/unpacking costs

Adgorithims Imdexing cosis
fomds w0 i w (F) o x w2
PITFALLS und Seuk APk | o ety S
| e L e LU g L
howpls i i re (] holsw ®orud?]
I i
S e b e wasr| s
Faschingunpacking costs
P L I il A i it
FPITFALLY apd Ssul APALN =
d il LA .,:,.l;._;_
[r ¥ il Lt L T B T

e TN | heerwise

of the PITFALLS method, the ScalLAPACK method, and the
GBCC method for a (s,P)-(¢,Q) redistribution on a one-
dimensional array with N array elements.

Case l: s<xQ and 7 < sxP

Table 2 shows the indexing costs, the
packing/unpacking costs, the communication costs, and
the total costs for these three methods to perform test
samples in this case on arrays with N = 80000 and N =
20000000. From Table 2, we can see that the indexing
costs of the GBCC method are less than those of the
Scal APACK method and the PITFALLS method for all
test samples. We also observe that the indexing costs of
these three methods are independent of the array size.
These phenomena match the indexing cost models
presented in Section 4.1.

According to Table 1, in this case, these three
methods have the same packing/unpacking costs.
However, from Table 2, we can see that the
packing/unpacking costs of the GBCC method are less
than those of the Scal APACK method which are less than
those of the PITFALLS method for all test samples. The
reason of this situation is that the GBCC method uses a
simpler computation approach than that of the
Scal. APACK method which uses a simpler computation
approach than that of the PITFALLS method when
packing/unpacking array elements.

For the communication costs, these three methods use
asynchronous communication schemes. There has no
clear winner in the communication cost part for all test
samples due to the character of an asynchronous
communication scheme. These three methods have
approximately the same communication costs for all test
samples.

Table 2: The indexing costs, the packing/unpacking costs, the
communication costs, and the total costs for these three
methods to perform test samples in this case on arrays with N
= 80000 and N =20000000.
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Case 2: s > 1XQ or t > sXP

Table 3 shows the indexing costs, the
packing/unpacking costs, the communication costs, and
the total costs for these three methods to perform test
samples in this case on arrays with N = 80000 and N =
20000000. From Table 3, for the indexing costs, we
have similar observations as those described for Case 1.

From Table 3, we can see the packing/unpacking
costs of these three methods depend on the array size.
Therefore, when the local array size is large, the
performance of a packing/unpacking method plays an
important role in a redistribution. From Table 3, for the
same test sample with array size N = 20000000, we can
see that the packing/unpacking cost of the GBCC method
is much less than those of the PITFALLS method and the
Scal APACK method.  These phenomena match the
theoretical performance analysis presented in Section 4.1.
Therefore, the packing/unpacking method provided in the
GBCC method outperforms those of provided in the
PITFALLS method and the ScalAPACK method for this
case.

Case 3: P=kP’, Q= kQ’ where gcd(P’,Q’)=1and k21
Figure 5 shows the indexing costs of (s, kP’) - (¢, kQ")
redistributions with array size N = 20000000, where £ = 1
to 5. From Figure 5, we can see that the indexing costs
of the PITFALLS method and the ScalAPACK method
increase when the value of & increases. The indexing
costs of the GBCC method are independent of the value of
k. As described in Section 4.1, both 7,4 (PITFALLS)
and 7,4ex(ScalAPACK) shown in Equations (10) and (12)
. txQ* +sxpP? .
are approximately to _(—5gcdSXP,tXQ while 7,4.(GBCC)

Equation (14) is approximately to

In this case, both T, (PITFALLS) and

shown in
txQ+sxP

gcdisxP,tXQ;'

. kltxQ" +sx P°
Tingex(ScaLAPAC tely t =
d ( ca K) arc approximately to Egm%

which depends on the value of k. T4 (GBCC) is

approximately to IXOHS XD Ghich s independent of
gcdisXP',tXQ';

the value of k. Therefore, the experimental results match

the theoretical analysis for this case.
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Figure 5: The indexing costs of the (s, kP’)-(t, kQ°)
redistribution where k=1, 2, 3, 4, and 5.

Experimental Results for Two-dimensional array
redistributions

Table 4 shows the indexing costs, the
packing/unpacking costs, the communication costs, and
the total costs of these three methods to perform two-
dimensional array redistributions on arrays with size
960x960 and 4800x4800. From Table 4, we can see that
the proposed method outperforms the PITFALLS method
and the Scal. APACK method for all test samples.

5. Conclusions

In this paper, we have presented a generalized basic-
cycle calculation method to efficiently perform a general
array redistribution of BLOCK-CYCLIC(s) over P
processors to BLOCK-CYCLIC(f) over  processors.
The basic idea of the GBCC method is to construct the
packing (unpacking) pattern table for array elements in the
first generalized basic-cycle of a source (destination) local
array. Based on the packing (unpacking) pattern table, a
source (destination) processor can pack (unpack) array
elements. To evaluate the performance of the GBCC
method, we compare it with the PITFALLS method and the
Scal. APACK method. Both theoretical and experimental
performance analysis were conducted for these three
methods. The theoretical performance analysis shows
that the indexing cost of the GBCC method is less than
that of the PITFALLS method and the ScalAPACK
method.  The packing/unpacking cost of the GBCC
method is less than or equal to those of the PITFALLS
method and the ScalAPACK method. The experimental
results demonstrate that the GBCC method outperforms



the PITFALLS method and the ScalAPACK method for all
test samples.
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