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Abstract
In this paper, we propose a prefix code matching

parallel load-balancing method (PCMPLB) to efficiently
deal with the load unbalancing problems of solution-
adaptive finite element application programs on
distributed memory multicomputers.  The main idea of
the PCMPLB method is first to construct a prefix code
tree for processors.  Based on the prefix code tree, a
schedule for performing load transfer among processors
can be determined by concurrently and recursively
dividing the tree into two subtrees and finding a maximum
matching for processors in the two subtrees until the
leaves of the prefix code tree are reached.  The
experimental results show that the execution time of an
application program under the PCMPLB method is less
than that of the direct diffusion method and the multilevel
diffusion method.

1. Introduction

To efficiently execute a finite element application
program on a distributed memory multicomputer, we need
to map nodes of the corresponding finite element graph to
processors of a distributed memory multicomputer such
that each processor has approximately the same amount of
computational load and the communication among
processors is minimized.  Since this mapping problem is
known to be NP-completeness [7], many heuristic
methods were proposed to find satisfactory sub-optimal
solutions [2, 4, 6, 8, 12-14, 19-20].  If the number of
nodes of a finite element graph will not be increased
during the execution of a finite element application
program, the mapping algorithm only needs to be
performed once.  For a solution-adaptive finite element

application program, the number of nodes will be
increased discretely due to the refinement of some finite
elements during the execution of a finite element
application program.  This will result in load unbalancing
of processors.  A node remapping or a load-balancing
algorithm has to be performed many times in order to
balance the computational load of processors while
keeping the communication cost among processors as low
as possible.  Since node remapping or load-balancing
algorithms were performed at run-time, their execution
must be fast and efficient.

Many load-balancing methods have been proposed in
the literature [5, 9-10, 15, 17-18, 21-22, 24].  In this
paper, we propose a prefix code matching parallel load-
balancing (PCMPLB) method to efficiently deal with the
load unbalancing problems of solution-adaptive finite
element application programs on distributed memory
multicomputers with fully-connected interconnection
networks such as multistage interconnection networks,
crossbar networks, etc.  The main idea of the PCMPLB
method is first to construct a prefix code tree for
processors according to the processor graph, where the
leaves of the prefix code tree are processors.  Based on
the prefix code tree, a schedule for performing load
transfer among processors can be determined by
concurrently and recursively dividing the tree into two
subtrees and finding a maximum matching for processors
in the two subtrees until the leaves of the prefix code tree
are reached.

To evaluate the performance of the PCMPLB method,
we have implemented the PCMPLB method along with
two load-balancing methods, the direct diffusion method
[5, 21] and the multilevel diffusion method [9, 17-18], and
five mapping methods, AE/MC [4], AE/ORB [4],
JOSTLE-MS [20-21], MLkP [12], and PARTY [16] on an



SP2 parallel machine.  The experimental results show
that (1) if a mapping method is used for the initial
partitioning and this mapping method or a load-balancing
method is used in each refinement, the execution time of
an application program under a load-balancing method is
always less than that of the mapping method.  (2) The
execution time of an application program under the
PCMPLB method is less than that of the direct diffusion
method and the multilevel diffusion method.

2. The Prefix Code Matching Parallel Load-
Balancing Method

 
The PCMPLB method can be divided into the

following four phases.
Phase 1: Obtain a processor graph G from the initial

partition.
Phase 2: Construct a prefix code tree for processors in

G.
Phase 3: Determine the load transfer sequence by using

matching theorem.
Phase 4: Perform the load transfer.

In the following, we will describe them in details.

2.1. The Processor Graph

When nodes of a solution-adaptive finite element graph
were distributed to processors by some mapping
algorithms, according to the communication property of
the finite element graph, we can get a processor graph
from the partition.  In a processor graph, nodes represent
the processors and edges represent the communication
needed among processors.  The weights associated with
nodes and edges denote the computation and the
communication costs, respectively.  We now give an
example to explain it.

EXAMPLE 1: Figure 1 shows an example of a
processor graph.  Figure 1(a) shows an initial partition of
a 100-node finite element graph on 10 processors by using
the MLkP method.  In Figure 1(a), all processors are
assigned 10 finite element nodes.  After the refinement,
the number of nodes assigned to processors P0, P1, P2, P3,
P4, P5, P6, P7, P8, and P9 are 10, 11, 11, 12, 10, 19, 16, 13,
13, and 13, respectively, and is shown in Figure 1(b).
The corresponding processor graph of Figure 1(b) is
shown in Figure 1(c).

2.2. The Construction of a Prefix Code Tree

Based on the processor graph, we can construct a prefix
code tree.  The construction of a prefix code tree TPrefix is
based on the Huffman’s algorithm [11] and is given as
follows:

Step 1: Let V be a set of P isolated vertices, where P is

the number of processors in G.  Each vertex Pi in V is the
root of a complete binary tree (of height 0) with a weight
wi = 1.

Step 2: While |V| > 1, perform the following:
(a) Find a tree T in V with the smallest root weight w.

If there are two or more candidates, choose the one
whose leaf nodes have the smallest degree in G.

(b) For trees in V whose leaf nodes are adjacent to
those in T, find a tree T’ with the smallest root weight
w’.  If there are two or more candidates, choose the
one whose leaf nodes have the smallest degree in G.

(c) Create a new (complete binary) tree T* with root
weight w* = w + w’ and having T and T’ as its left and
right substrees, respectively.

(d) Place T* in V and delete T and T’.
(e) Repeat (a) to (d) until V’ = 1.

We now give an example to explain the above description.
EXAMPLE 2: An example of step by step construction

of a prefix code tree from the processor graph shown in
Figure 1(c) is given in Figure 2.  The degrees of
processors P0, P1, P2, P3, P4, P5, P6, P7, P8, and P9 are 2, 4,
4, 5, 3, 3, 3, 4, 4, and 6, respectively.  The initial
configuration is shown in Figure 2(a).  Initially, P5 has
the smallest degree.  P5 and P6 are combined as a tree
and we obtain a new configuration as shown in Figure 2(b).
By applying Steps 2(a)-2(e), we can obtain Figures 2(c)-
2(j).  Once the construction of a prefix code tree is
completed, each processor is assigned a prefix code word,
that is, P0 = 1000, P1 = 1001, P2 = 1010, P3 = 111, P4 =
1011, P5 = 000, P6 = 001, P7 = 010, P8 = 110, and P9 =
011.
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Figure 1: An example of a processor graph.  (a) The initial
partitioned finite element graph.  (b) The finite element
graph after a refinement.  (c) The corresponding processor
graph obtained from (b).
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Figure 2: A step by step construction of a prefix code tree
from Figure 1(c).

2.3. Determine a Load Transfer Sequence by
Using Matching Theorem

Based on the prefix code tree and the processor graph,
we can obtain a communication pattern graph.

Definition 1: Given a processor graph G = (V, E) and a
prefix code tree TPrefix, the communication pattern graph
Gc = (Vc, Ec) of G and TPrefix is a subgraph of G.  For
every (Pi, Pj) ∈ Ec, Pi and Pj are in the left and the right
subtrees of TPrefix, respectively, and Pi, Pj ∈ Vc.

The communication pattern graph has several
properties that can be used to determine the load transfer
sequence.

Definition 2: A graph G = (V, E) is called bipartite if V
= V1 ∪ V2 with V1 ∩ V2 = φ, and every edge of G is of the
form {a, b} with a ∈ V1 and b ∈ V2.

Theorem 1: A communication pattern graph Gc is a
bipartite graph.

Proof: According to Definition 1, for every (Pi, Pj) ∈
Ec, Pi and Pj are in the left and right subtrees of TPrefix,
respectively.  Therefore Gc is a bipartite graph.       ■

Definition 3: A subset M of E is called a matching in G
if its elements are edges and no two of them are adjacent
in G; the two ends of an edge in M are said to be matched
under M.  M is a maximum matching if G has no
matching M’  with |M’ | > |M|.

Theorem 2: Let G = (V, E) be a bipartite graph with
bipartition (V1, V2).  Then G contains a matching that
saturates every vertex in V1 if and only if |N(S)| ≥ |S| for all
S ⊆ V1, where N(S) is the set of all neighbors of vertices in
S.

Proof: The proof can be found in [3].             ■
Corollary 1: Let Gc = (Vc, Ec) be a communication

pattern graph and VL and VR are the sets of processors in
the left and the right subtrees of TPrefix, respectively, where
VL, VR ⊆ Vc.  Then we can find a maximum matching M
from Gc such that for every element (Pi, Pj) ∈ M, Pi ∈ VL

and Pj ∈ VR.
Proof: From Definition 3 and Hungarian method [3],

we know that a maximum matching M from Gc can be
found.                                        ■

From the communication pattern graph, we can
determine a load transfer sequence for processors in the
left and the right subtrees of a prefix code tree by using the
matching theorem to find a maximum matching among the
edges of the communication pattern graph.  Due to the
construction process used in Phase 2, we can also obtain
communication pattern graphs from the left and the right
subtrees of a prefix code tree.  A load transfer sequence
can be determined by concurrently and recursively
dividing a prefix code tree into two subtrees, constructing
the corresponding communication pattern graph, finding a
maximum matching for the communication pattern graph,
and determining the number of finite element nodes need
to be transferred among processors until a tree contains
one vertex.  Assume that there are P processors in a
processor graph and N nodes in a refined finite element
graph.  We define N/P as the average load of a processor.
The load of a processor is defined as the number of finite
element nodes assigned to it.  The load transfer sequence
is determined as follows:

Step 1: Let S be a set that contains the prefix code tree
obtained in Phase 2.

Step 2: While |S| < P, for each tree TPrefix in S and the
number of vertices in TPrefix is greater than 1, perform the
following:

(a) Let TL and TR be the left and the right subtrees of
TPrefix, respectively.  PL and PR represent the number of
processors (leaf nodes) in TL and TR, respectively.  Find
the communication pattern graph Gc from the processor
graph G and the prefix code tree TPrefix.

(b) Find a maximum matching M = {(Pi, Qi)| Pi and
Qi are processors in TL and TR, respectively, and Pi and
Qi are adjacent in G} from Gc.

(c) Calculate quota(TL), quota(TR), load(TL) and



load(TR), where quota(TL) and quota(TR) denote the sum
of the average load of processors in TL and TR,
respectively; and load(TL) and load(TR) represent the
sum of the load of processors in TL and TR, respectively.

(d) If load(TR) > quota(TR), processors in TR need to
send m = load(TR) − quota(TR) finite element nodes to
processors in TL.  If load(TR) < quota(TR), processors in
TL need to send m = load(TL) − quota(TL) finite element
nodes to processors in TR.  If load(TR) = quota(TR), go
to step 2(g).

(e) For each element (Pi, Qi) in M, determine the
number of finite element nodes that Pi (Qi) needs to send
to Qi (Pi) based on |M|, the load of Pi (Qi), and the value
of m.  Assume that M = {(P1, Q1), (P2, Q2), … , (Pk, Qk)}
and load(TR) > quota(TR).  The number of finite
element nodes that Qi needs to send to Pi is wi =

),(/)(
1

∑
=

×
k

j
ji QloadQloadm  where load(Qi) is the

number of finite element nodes assigned to processor Qi.
If load(Qi) < wi, an exception handling procedure is
carried out by moving finite element nodes from
processors in TR to Qi to ensure that load(Qi) ≥ wi.

(f) Place TL and TR in S and delete TPrefix from S.
(g) Repeat (a) to (f) until |S| = P.

We now give an example to explain the above description.
EXAMPLE 3: Figure 3 shows the communication

pattern graphs and their corresponding maximum
matching for the examples shown in Figures 1 and 2 step
by step when performing the procedure described in this
subsection.  Figure 1(a) shows the communication
pattern graph for the prefix code tree with root at level 1.
In Figure 3(a), an arrow is an element of a matching.
The number associated with an arrow denotes the number
of finite element nodes that a processor needs to send to
the other processor.  Figure 3(b) to Figure 3(d) show the
communication pattern graphs for the prefix code trees
with roots at levels 2, 3, and 4, respectively.  When the
matching of each communication pattern graph is found,
the load transfer sequence can be determined as follows.

Step 1: P6 →4 P8, P7 →3 P4, P9 →3 P3;
Step 2: P5 →3 P7, P6 →2 P9, P3 →3 P0, P8 →4 P1;
Step 3: P5 →3 P6, P0 →2 P2, P8 →1 P3;
Step 4: P1 →2 P0.

2.4. Perform the Load Transfer

After the determination of the load transfer sequence,
the physical load transfer can be carried out among the
processors according to the load transfer sequence in
parallel.  The goals of the physical load transfer are to
balance the load of processors and to minimize the
communication cost among processors.  By following the
load transfer sequence, the goal of load balancing can be

achieved easily.  Assume that processor Pi needs to send
m finite element nodes to processor Qi.  To minimize the
communication cost between processors Pi and Qi, Pi

sends finite element nodes that are adjacent to those in Qi

(we called these nodes as boundary nodes) to Qi.  If the
number of boundary nodes is greater than m, nodes with
smaller degrees will be sent from Pi and Qi.  If the
number of boundary nodes is less than m, the boundary
nodes and nodes that are adjacent to the boundary nodes
will be sent from Pi and Qi.
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Figure 3: The matching of the communication pattern graph.
(a) The first matching.  (b) The second matching.  (c) The
third matching.  (d) The fourth matching.

3. Performance Evaluation and Experimental
Results

To evaluate the performance of the proposed method,
we have implemented the PCMPLB method along with
two load-balancing methods, the direct diffusion method
(DD) and the multilevel diffusion method (MD), and five
mapping methods, the AE/MC method, the AE/ORB
method, the JOSTLE-MS method, the MLkP method, and
the PARTY library method, on an SP2 parallel machine.
All algorithms were written in C with MPI communication
primitives.  Three criteria, the execution time of
mapping/load-balancing methods, the computation time of
an application program under different mapping/load-
balancing methods, and the speedups achieved by the
mapping/load-balancing methods for an application
program, are used for the performance evaluation.

In dealing with the unstructured finite element graphs,
the distributed irregular mesh environment (DIME) [23] is
used.  In this paper, we only use DIME to generate the
initial test sample.  From the initial test graph, we use our
refining algorithms and data structures to generate the



desired test graphs.  The initial test graph used for the
performance evaluation is shown in Figure 4.  The
number of nodes and elements for the test graph after each
refinement are shown in Table 1.  For the presentation
purpose, the number of nodes and the number of finite
elements shown in Figure 4 are less than those shown in
Table 2.

Table 1.  The number of nodes and elements of the test
graph truss .

Refine
Truss

Initial
(0)

1 2 3 4 5

node # 18407 23570 29202 36622 46817 57081
Element # 35817 46028 57181 71895 92101 112494

Figure 4.  The test sample  truss  (7325 nodes, 14024
elements).

To emulate the execution of a solution-adaptive finite
element application program on an SP2 parallel machine,
we have the following steps.  First, read the initial finite
element graph.  Then use the AE/MC method or the
AE/ORB method or the JOSTLE-MS method or the MLkP
method or the PARTY library method to map nodes of the
initial finite element graph to processors.  After the
mapping, the computation of each processor is carried out.
In our example, the computation is to solve Laplaces
equation (Laplace solver).  The algorithm of solving
Laplaces equation is similar to that of [1].  Since it is
difficult to predict the number of iterations for the
convergence of a Laplace solver, we assume that the
maximum number of iterations executed by our Laplace
solver is 1000.  When the computation is converged, the
first refined finite element graph is read.  To balance the
computational load of processors, the AE/MC method or
the AE/ORB method or the JOSTLE-MS method or the
MLkP method or the PARTY library method or the direct
diffusion method or the multilevel diffusion method or the
PCMPLB method is applied.  After a mapping/load-
balancing method is performed, the computation for each
processor is carried out.  The procedures of mesh
refinement, load balancing, and computation processes are
performed in turn until the execution of a solution-
adaptive finite element application program is completed.

By combining the initial mapping methods and
methods for load balancing, there are twenty methods used
for the performance evaluation.  For examples, the
AE/ORB method uses AE/ORB to perform the initial
mapping and AE/ORB to balance the computational load

of processors in each refinement.  The
AE/ORB/PCMPLB method use AE/ORB to perform the
initial mapping and PCMPLB to balance the
computational load of processors in each refinement.

3.1. Comparisons of the Execution Time of
Mapping/Load-Balancing Methods

The execution time of different mapping/load-
balancing methods for the test unstructured finite element
graph truss on an SP2 parallel machine with 10, 30, and
50 processors are shown in Table 2.  In Table 2, we list
the initial mapping time and the refinement time for
mapping/load-balancing methods.  The initial mapping
time is the execution time of mapping methods to map
finite element nodes of the initial test sample to processors.
The refinement time is the sum of the execution time of
mapping/load-balancing methods to balance the load of
processors after each refinement.  Since we deal with the
load balancing issue in this paper, we will focus on the
refinement time comparison of mapping/load-balancing
methods.  From Table 2, we can see that, in general, the
refinement time of load-balancing methods is shorter than
that of the mapping methods.  The reasons are (1) the
mapping methods has higher time complexity than those
of the load-balancing methods; and (2) the mapping
methods need to perform gather-scatter operations that are
time consuming in each refinement.

For the same initial mapping method, the refinement
time of the PCMPLB method, in general, is shorter than
that of the direct diffusion and the multilevel diffusion
methods.  The reasons are as follows:

(1) The PCMPLB method has less time complexity
than those of the direct diffusion and the multilevel
diffusion methods.

(2) The physical load transfer is performed in parallel
in the PCMPLB method.

(3) The number of data movement steps among
processors in the PCMPLB method is less than
those of the direct diffusion and the multilevel
diffusion methods.

3.2. Comparisons of the Execution Time of the
Test Sample under Different Mapping/
Load-Balancing Methods

The time of a Laplace solver to execute one iteration
(computation + communication) for the test sample under
different mapping/load-balancing methods on an SP2
parallel machine with 10, 30, and 50 processors are shown
in Figure 5, Figure 6, and Figure 7, respectively.  Since
we assume a synchronous mode of communication in our
model, the total time for a Laplace solver to complete its
job is the sum of the computation time and the



communication time.  From Figure 5 to Figure 7, we can
see that if the initial mapping is performed by a mapping
method (for example AE/ORB) and the same mapping
method or a load-balancing method (DD, MD, PCMPLB)
is performed for each refinement, the execution time of a
Laplace solver under the proposed load-balancing method
is shorter than that of other methods.  The reasons are as
follows:

(1) The PCMPLB method uses the maximum matching
to determine the load transfer sequence.  Data
migration can be done between adjacent processors.
This local data migration ability can greatly reduce
the amount of global data migration and therefore
reduce the communication cost of a Laplace Solver.

(2) In the physical load transfer, the PCMPLB method
tries to transfer boundary nodes between processors.
This will also reduce the communication overheads
of a Laplace Solver.

3.3. Comparisons of the Speedups under the
Mapping/Load-Balancing Methods for the
Test Sample

The speedups and the maximum speedups under the
mapping/load-balancing methods on an SP2 parallel
machine with 10, 30, and 50 processors for the test sample
are shown in Table 3 and Table 4, respectively.  The
maximum speedup is defined as the ratio of the execution
time of a sequential Laplace solver to the execution time
of a parallel Laplace solver.  From Table 3, we can see
that if the initial mapping is performed by a mapping
method (for example AE/ORB) and the same mapping
method or a load-balancing method (DD, MD, PCMPLB)
is performed for each refinement, the proposed load-
balancing method has the best speedup among
mapping/load-balancing methods.

From Table 4, we can see that if the initial mapping is
performed by a mapping method (for example AE/ORB)
and the same mapping method or a load-balancing method
(DD, MD, PCMPLB) is performed for each refinement,
the proposed load-balancing method has the best
maximum speedup among mapping/load-balancing
methods.  For the mapping methods, AE/MC has the best
maximum speedups for test samples.  For the load-
balancing methods, AE/MC/PCMPLB has the best
maximum speedups for test samples.  From Table 4, we
can see that a better initial mapping method is used, a
better maximum speedup can be expected when the
PCMPLB method is used in each refinement.

4. Conclusions

In this paper, we have proposed a prefix code matching
parallel load-balancing method, the PCMPLB method, to

deal with the load unbalancing problems of solution-
adaptive finite element application programs.  To
evaluate the performance of the proposed method, we
have implemented this method along with two load-
balancing methods, the direct diffusion method and the
multilevel diffusion method, and five mapping methods,
AE/MC, AE/ORB, JOSTLE-MS, MLkP, and PARTY, on
an SP2 parallel machine.  The unstructured finite element
graph truss is used as test sample.  Three criteria, the
execution time of mapping/load-balancing methods, the
execution time of a solution-adaptive finite element
application program under different mapping/load-
balancing methods, and the speedups under mapping/load-
balancing methods for a solution-adaptive finite element
application program, are used for the performance
evaluation.  The experimental results show that (1) if a
mapping method is used for the initial partitioning and this
mapping method or a load-balancing method is used in
each refinement, the execution time of an application
program under a load-balancing method is always shorter
than that of the mapping method.  (2) The execution time
of an application program under the PCMPLB method is
less than that of the direct diffusion method and the
multilevel diffusion method.
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Table 2: The execution time of different mapping/load-balancing methods for the test sample on different
numbers of processors.

10 30 50# of processors

Method
initial

mapping
refinement

initial
mapping

refinement
Initial

Mapping
refinement

AE/MC 5.054 37.563 7.964 67.061 10.256 129.929
AE/MC/DD 5.035 1.571 7.671 1.383 10.041 1.585
AE/MC/MD 5.035 7.231 7.671 4.043 10.041 4.245

AE/MC/PCMPLB 5.035 0.444 7.671 0.652 10.041 0.458
AE/ORB 0.633 7.493 0.637 6.713 0.742 6.938

AE/ORB/DD 0.614 1.607 0.614 2.086 0.586 2.763
AE/ORB/MD 0.614 4.586 0.614 5.028 0.586 6.013

AE/ORB/PCMPLB 0.614 0.474 0.614 0.769 0.586 1.475
JOSTLE-MS 1.055 3.459 1.02 4.426 2.26 5.763

JOSTLE-MS/DD 1.036 0.741 0.997 1.968 0.704 2.954
JOSTLE-MS/MD 1.036 3.45 0.997 4.838 0.704 6.173

JOSTLE-MS/PCMPLB 1.036 0.483 0.997 1.57 0.704 0.922
MLkP 0.567 4.96 0.589 5.279 0.771 5.908

MLkP/DD 0.548 1.289 0.566 1.872 0.621 2.295
MLkP/MD 0.548 4.142 0.566 4.867 0.621 5.612

MLkP/PCMPLB 0.548 1.083 0.566 0.684 0.621 1.233
PARTY 1.969 18.195 1.809 19.6 1.752 19.262

PARTY/DD 1.937 1.347 1.786 2.009 1.577 2.578
PARTY/MD 1.937 4.255 1.786 5.157 1.577 6.278

PARTY/PCMPLB 1.937 1.58 1.786 1.09 1.577 0.941
Time unit: seconds
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Figure 7: The time for Laplace solver to execute one iteration
(computation + communication) for the test sample under
different mapping/load-balancing methods on 10 processors.
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Figure 6: The time for Laplace solver to execute one iteration
(computation + communication) for the test sample under
different mapping/load-balancing methods on 30 processors.
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Figure 7: The time for Laplace solver to execute one iteration
(computation + communication) for the test sample under
different mapping/load-balancing methods on 50 processors.

Table 3: The speedups under the mapping/load-balancing
methods for the test sample on an SP2 parallel machine.

# of processors
Method 10 30 50

AE/MC 5.18 7.54 5.71
AE/MC/DD 6.79 15.73 23.28
AE/MC/MD 6.9 15.85 21.78

AE/MC/PCMPLB 7.48 18.13 25.32
AE/ORB 6.16 14.65 20.95

AE/ORB/DD 6.71 16.66 27.52
AE/ORB/MD 6.74 17.2 24.57

AE/ORB/PCMPLB 7.39 19.57 30.38
JOSTLE-MS 6.42 15.11 22.35

JOSTLE-MS/DD 6.82 17.73 26.22
JOSTLE-MS/MD 6.99 17.53 25.65

JOSTLE-MS/PCMPLB 7.67 19.8 32.31
MLkP 6.41 15.59 22.27

MLkP/DD 6.93 17.16 28.19
MLkP/MD 6.87 17.1 25.85

MLkP/PCMPLB 7.65 20.11 31.59
PARTY 5.8 12.27 17.68

PARTY/DD 6.9 17.52 26.21
PARTY/MD 6.88 16.5 25.13

PARTY/PCMPLB 7.33 19.27 30.04

Table 4: The maximum speedups under the
mapping/load-balancing methods for the test sample on

an SP2 parallel machine.

# of processors
Method 10 30 50

AE/MC 6.66 17.47 28.92
AE/MC/DD 7.11 18.35 31.96
AE/MC/MD 7.37 19.48 31.67

AE/MC/PCMPLB 7.8 21.19 34.53
AE/ORB 6.49 16.43 24.98

AE/ORB/DD 6.81 17.45 30.32
AE/ORB/MD 6.98 19.05 29.35

AE/ORB/PCMPLB 7.45 20.11 32.41
JOSTLE-MS 6.61 16.47 27.25

JOSTLE-MS/DD 6.91 18.72 29.01
JOSTLE-MS/MD 7.21 19.53 31.17

JOSTLE-MS/PCMPLB 7.77 20.86 34.1
MLkP 6.64 17.17 26.18

MLkP/DD 7.02 17.91 30.72
MLkP/MD 7.1 18.85 30.83

MLkP/PCMPLB 7.75 20.64 33.56
PARTY 6.57 16.66 28.19

PARTY/DD 7.06 18.77 29.43
PARTY/MD 7.19 18.65 31.34

PARTY/PCMPLB 7.52 20.4 32.5


