
Efficient Methods for Multi-Dimensional Array Redistribution

Yeh-Ching Chung and Ching-Hsien Hsu

Department of Information Engineering
Feng Chia University, Taichung, Taiwan 407, ROC

Tel : 886-4-4517250 x3746
Fax : 886-4-4516101

Email: ychung, chhsu@pine.iecs.fcu.edu.tw

Abstract
In this paper, we present efficient methods for multi-

dimensional array redistribution. Based on the previous
work, the basic-cycle calculation technique, we present a
basic-block calculation (BBC) and a complete-dimension
calculation (CDC) techniques. We have developed a
theoretical model to analyze the computation costs of
these two techniques. The theoretical model shows that
the BBC method has smaller indexing costs and performs
well for the redistribution with small array size. The
CDC method has smaller packing/unpacking costs and
performs well when the array size is large. We also have
implemented these two techniques along with the
PITFALLS method and the Prylli’s method on an IBM SP2
parallel machine. The experimental results show that
the BBC method has the smallest execution time of these
four algorithms when the array size is small. The CDC
method has the smallest execution time of these four
algorithms when the array size is large. Furthermore,
the BBC method outperforms the PITFALLS method and
the Prylli’s method for all test samples.

Keywords: array redistribution, the basic-block
calculation technique, the complete-dimension calculation
technique.

1. Introduction

In some algorithms, such as multi-dimensional fast
Fourier transform, the Alternative Direction Implicit (ADI)
method for solving two-dimensional diffusion equations,
and linear algebra solvers, an array distribution that is
well-suited for one phase may not be good for a
subsequent phase in terms of performance. Array
redistribution is required for those algorithms during run-
time to enhance algorithm performance. Therefore,
many data parallel programming languages support run-
time primitives for array redistribution. Since array
redistribution is performed at run-time, there is a
performance trade-off between the efficiency of new data
decomposition for a subsequent phase of an algorithm and
the cost of redistributing array among processors. Thus
efficient methods for performing array redistribution are
of great importance for the development of distributed

memory compilers for those languages. Many methods
for performing array redistribution were proposed in the
literature [1-2, 5-7, 9-14, 16-19]. Due to the page
limitation, we will not describe these methods here. The
details of these methods can be found in [2].

In this paper, based on the basic-cycle calculation
technique [2], we present a basic-block calculation (BBC)
and a complete-dimension calculation (CDC) techniques
for multi-dimensional array redistribution. The main
idea of the basic-block calculation technique is first to use
the basic-cycle calculation technique to determine
source/destination processors of some specific array
elements in a basic-block. From the source/destination
processor/data sets of a basic-block, we can efficiently
perform a redistribution. The complete-dimension
calculation technique also uses the basic-cycle calculation
technique to generate the communication sets of a
redistribution. However, it generates the communication
sets for array elements in the first row of each dimension
of a local array. This will result in a high indexing
overheads. But the packing/unpacking overheads can be
greatly reduced. These two techniques can be easily
implemented in a parallelizing compiler, run-time systems,
or parallel programs. In this paper, we also developed a
theoretical model to analyze the tradeoff between these
two techniques.

2. Preliminaries

To simplify the presentation, we use BC(s0, s1, ...,
sn−1)→BC(t0, t1, ..., tn−1) to represent the (CYCLIC(s0),
CYCLIC(s1), …, CYCLIC(sn−1)) to (CYCLIC(t0),
CYCLIC(t1), …, CYCLIC(tn−1)) redistribution for the rest
of the paper.

Definition 1: An n-dimensional array is defined as the
set of array elements)(nA =]:1...,,:1,:1[110 −nnnnA =

{ ≤≤
− "

da
nddd 0

110 ,...,, 10,1 −≤≤− nn "
"

}. The size of

array)(nA , denoted by)(nA , is equal to n0 × n1 × ... × nn−1.

In this paper, we assume that array elements are stored in a
memory by a row-major manner.

Definition 2: An n-dimensional processor grid is
defined as the set of processors)(nM =

]...,,,[110 −nmmmM = { ≤≤
− "

dp
nddd 0~

110 ,...,, ,1−
"

m

10 −≤≤ n" }. The number of processors of)(nM ,

denoted by)(nM , is equal to m0 × m1 × ... × mn-1.

Definition 3: Given an n-dimensional processor grid
)(nM , the rank of processor

110 ,...,,
~

−ndddp is equal to

i=)(
1

0

1

1
∑ ∏

−

=

−

+=
×

n

k

n

k
k md

"

"
, where 0≤

"
d ≤

"
m −1, 0≤ " ≤ n −1. To

simplify the presentation, we also use processor Pi to

denote
110 ,...,,

~
−ndddp in this paper, where 0 ≤ i ≤)(nM −1.

Definition 4: Given a BC(s0, s1, ..., sn-1)→BC(t0, t1, ...,
tn-1) redistribution, BC(s0, s1, ..., sn-1), BC(t0, t1, ..., tn-1), "

s

and
"

t are called the source distribution, the destination

distribution, the source distribution factors, and the
destination distribution factors of the redistribution,
respectively, where 0 ≤ " ≤ n-1.

Definition 5: Given a BC(s0, s1, ..., sn-1)→BC(t0, t1, ...,
tn−1) redistribution on)(nA over)(nM , the source
(destination) local array of processor Pi, denoted by

)(n
iSLA ()(n

jDLA)[1:
0

0
m
n , 1:

1

1
m
n , ..., 1:

1

1

−

−

n

n
m
n], is defined as the

set of array elements that are distributed to processor Pi

(Pj) in the source (destination) distribution, i.e.,
)(n

iSLA =  ∏
−

=

1

0

n

b
m
n

b

b , where 0≤i≤)(nM −1.

Definition 6: We define)(
,
n

iSLA
"

 as the set of array

elements in the first row of the " th dimension of)(n
iSLA ,

i.e.,)(
,
n

iSLA
"

 =)(n
iSLA [1,...,1, 1:

"

"

m
n , 1,...,1], where 0 ≤ i ≤

)(nM −1 and 0 ≤ " ≤ n −1. The number of array elements

in)(
,
n

iSLA
"

 is equal to
"

"

m
n .][)(

, rSLAn
i "

 is defined as the r th

array element of)(
,
n

iSLA
"

.

Definition 7: Given a BC(s0, s1, ..., sn−1)→BC(t0, t1, ...,
tn−1) redistribution on)(nA over)(nM , a basic-cycle of the
" th dimension of)(n

iSLA (or)(n
jDLA), denoted by

"
BC ,

is defined as
"

BC = lcm(
"

s ,
"

t)/gcd(
"

s ,
"

t), where 0

≤ " ≤ n −1.
Definition 8: Given a BC(s0, s1, ..., sn−1)→BC(t0, t1, ...,

tn−1) redistribution on)(nA over)(nM , a basic-block of
)(n

iSLA (or)(n
jDLA) is defined as the multiplication of the

basic-cycles in each dimension. The size of a basic-
block is equal to 0BC × 1BC × …× 1−nBC .

3. Multi-dimensional Array Redistribution

To perform a BC(s0, s1, ..., sn−1)→BC(t0, t1, ..., tn−1)
redistribution, in general, a processor needs to compute
the communication sets. Based on the characteristics of
a redistribution, we have the following lemmas. Due to
the page limitation, we will not present the proofs of
lemmas in this paper.

Lemma 1: Given a BC(s0, s1, ..., sn−1)→BC(t0, t1, ..., tn−1)
redistribution on)(nA over)(nM , for a source
(destination) processor Pi, if the rank of the destination
(source) processor of][)(

, k
n
ki rSLA (][)(

, k
n
ki rDLA) is 0,...,0,,0,...0

~
kj

p ,

where 0 ≤ i≤)(nM −1, k = 0 to n −1, 0 ≤j k≤ km −1, and

1≤rk≤  k

k
m
n , then the destination (source) processor of

],...,,[110
)(

−n
n

i rrrSLA (],...,,[110
)(

−n
n

i rrrDLA) is Pj, where j

=)(
1

0

1

1
∑ ∏

−

=

−

+=
×

n

k

n

k
k mj

"

"
.�

According to Lemma 1, the destination (source)
processor of],...,,[110

)(
−n

n
i rrrSLA (],...,,[110

)(
−n

n
j rrrDLA) can

be determined by the rank of destination (source)
processors of][0

)(
0, rSLAn

i ,][1
)(

1, rSLAn
i ,…, and][1

)(
1, −− n

n
ni rSLA

(][0
)(
0, rDLA n

j ,][1
)(
1, rDLA n

j ,…, and][1
)(

1, −− n
n
nj rDLA). Therefore,

how to efficiently determine the communication sets of
these array elements is important. The basic-block
calculation technique and the complete-dimension
calculation technique are based on the basic-cycle
calculation technique proposed in [2]. The main idea of
the basic-cycle calculation technique is based on the
following lemma.

Lemma 2: Given a BC(s)→BC(t) and a
BC(s/gcd(s,t))→BC(t/gcd(s,t)) redistribution on a one-
dimensional array A[1:N] over M processors, for a source
(destination) processor Pi (Pj), if the destination (source)
processor of SLAi[k] (DLAj[k]) in BC(s/gcd(s,
t))→BC(t/gcd(s, t)) redistribution is Pj (Pi), then the
destination (source) processors of SLAi[(k−1)×gcd(s,t)+1:
k×gcd(s,t)] (DLAj[(k−1)×gcd(s,t)+1:k×gcd(s,t)]) in BC(s)
→ BC(t) redistribution will also be Pj (Pi), where 1 ≤ k ≤
N/(M×gcd(s,t)). �

Given a BC(s0, s1, ..., sn−1)→BC(t0, t1, ..., tn−1)
redistribution, according to Lemma 2, we know that the
communication sets of BC (s0/gcd(s0,t0), s1/gcd(s1,t1), ...,
sn−1/gcd(sn−1,tn−1)) → BC(t0/gcd(s0,t0), t1/gcd(s1,t1), ...,
tn−1/gcd(sn−1,tn−1)) redistribution can be used to generate the
communication sets of BC(s0, s1, ..., sn−1)→BC(t0, t1, ..., tn−1)
redistribution. Therefore, in the following discussion,
for a BC(s0, s1, ..., sn−1)→BC(t0, t1, ..., tn−1) redistribution,
we assume that gcd(si, ti) is equal to 1, where 1≤ i ≤ n − 1.
If gcd(si, ti) is not equal to 1, we use si/gcd(si,ti) and
ti/gcd(si,ti) as the source and destination distribution
factors of the redistribution, respectively.

3.1 The Basic-Block Calculation Technique

Given a BC(s0, s1)→BC(t0, t1) redistribution on a
two-dimensional array A[1:n0,1:n1] over M [m0, m1], to
perform the redistribution, we have to first construct the
communication sets. According to Lemma 1, a source
processor Pi only needs to determine the destination
processor sets for)2(

0,iSLA [1:BC0] and)2(
1,iSLA [1:BC1].

Then it can generate the destination processor sets for
)2(

iSLA [1:BC0, 1:BC1]. For example, if the destination

processors of)2(
0,iSLA [r0] and)2(

1,iSLA [r1] are 0,0

~
jp and

1,0
~

jp , respectively, the destination processor jP =
10,

~
jjp

of]][[10
)2(rrSLAi can be determined by the following

equation,

Rank(jP) = 0j × 1m + 1j , (1)

For a source processor Pi, if Pi =
10,

~
iip , according to

Definition 3, we have 0i =i/m1 and 1i =),(1mimod ,

where 0≤ 0i ≤ 0m −1 and 0≤ 1i ≤ 1m −1. Since the values of

0i and 1i are known, the destination processors of
)2(

0,iSLA [1:BC0] and)2(
1,iSLA [1:BC1] can be determined by

the following equation,

)("DP =

1

2

1

)(

×



















×

"
"

�

BC
BC

xF (2)

Where " = 0 and 1. The function)(xF is defined as








 ××=
"

"""

t

tmsmod
xF

),(
)(

β
, (3)

where x = 1 to
"

BC and β is defined as

β = 







×+

"

""

s

x
mi , (4)

For a two-dimensional array redistribution, from
Equation 2, we can obtain)0(DP and)1(DP that represent

the destination processors of)2(
0,iSLA [1:BC0] and

)2(
1,iSLA [1:BC1], respectively. According to)0(DP ,)1(DP ,

and Equation 1, a source processor Pi can determine the
destination processor of array elements in the first basic-
block of)2(

iSLA , i.e.,)2(
iSLA [1: BC0, 1:BC1].

For a multi-dimensional array redistribution, each
basic-block of a local array has the same communication
patterns. The following lemma states this characteristic.

Lemma 3: Given a BC(s0, s1)→BC(t0, t1) redistribution
on a two-dimensional array A[1:n0, 1:n1] over M [m0, m1],

)2(
iSLA [x, y],)2(

iSLA [x+k0×BC0, y],)2(
iSLA [x, y+k1×BC1],

)2(
iSLA [x+k0×BC0, y+k1×BC1] have the same destination

processor, where 0 ≤ i ≤ m0×m1 −1, 1 ≤ x ≤ lcm(s0, t0), 1 ≤ y
≤ lcm(s1, t1), 1≤ k0≤ n0 /(lcm(s0, t0)×m0) and 1≤ k1≤ n1

/(lcm(s1, t1)×m1). �
Since each basic-block has the same communication

patterns, we can pack local array elements to messages

according to the destination processors of array elements
in)2(

iSLA [1: BC0, 1:BC1]. However, if the value of

BC0×BC1 is large, it may take a lot of time to compute the
destination processors of array elements in a basic-block
by using Equation 1. In the basic-block calculation
technique, instead of using the destination processors of
array elements in the first basic-block, it uses a table
lookup method to pack array elements. Given a BC(s0,
s1)→BC(t0, t1) redistribution on a two-dimensional array
A[1:n0,1:n1] over M [m0, m1], since the destination
processors of)2(

iSLA [1:BC0, 1:BC1] can be determined by

)0(DP and)1(DP , if we gather the indices of array elements

in)2(
, "iSLA [1:

"
BC] that have the same destination

processor to tables, Send_Tables, we can also determine
the destination processors of)2(

iSLA [1: BC0, 1:BC1] from

Send_Tables.
In the receive phase, according to Lemma 2, a

destination processor Pj only needs to determine the
source processor sets for)2(

0,jDLA [1:BC0] and)2(
0,jDLA

[1:BC1]. Then it can generate the source processor sets
for)2(

jDLA [1: BC0, 1:BC1]. For example, if the source

processors of)2(
0,jDLA [r0] and)2(

0,jDLA [r1] are 0,0

~
ip and

1,0
~

ip , respectively, the source processor iP of

]][[10
)2(rrDLAj can be determined by the following

equation,
Rank(iP) = 0i × 1m + 1i , (5)

For a destination processor Pj, if Pj =
10,

~
jjp , according to

Definition 3, we have 0j =j/m1 and 1j = 1mmodj ,

where 0≤ 0j ≤ 0m −1 and 0≤ 1j ≤ 1m −1. Since the value of

0j and 1j are known, the source processors of
)2(
0,jDLA [1:BC0] and)2(

1,jDLA [1:BC1] can be determined by

the following equation,

)("SP =

1

2

1

)(

×



















×

"
"

�

BC
BC

xG (6)

Where " = 0, 1. The function)(xG is defined as








 ××
=

"

"""

s

smtmod
xG

),(
)(

γ
 (7)

where x = 1 to
"

BC and γ is defined as

γ = 







×+

"

""

t

x
mj , (8)

For a two-dimensional array redistribution, from
Equation 6, we can obtain)0(SP and)1(SP that represent

the source processors of)2(
0,jDLA [1:BC0] and

)2(
1,jDLA [1:BC1], respectively. According to)0(SP and

)1(SP , we can also construct the Receive_Tables for the

destination processor Pj as we construct the Send_Tables
in the send phase. Based on the Receive_Tables, we can
unpack array elements from the received messages to their
appropriate destination local array positions.

The algorithm of the basic-block calculation
technique is given as follows.
__

Algorithm Basic_Block_Calculation(s0, …, sn−1, t0, …, tn−1,
n0, …, nn−1, m0, …, mn−1)

1. Construct Send_Tables;
2. For (j = myrank, z=0 ; z < |M| ; j++, z++)
3. j = mod(j , |M|);
4. Pack the message for destination processor Pj to

out_buffer according to the STs;
5. If (out_buffer != NULL)
6. Send out_buffer to destination processor Pj;
7. Construct Receive_Tables;
8. x = the number of messages to be received;
9. For (z=0 ; z < x ; z++)
10. Receive data sets in_buffer from any source processor;
11. Unpack the received messages according to the RTs;
end_of_ Basic_Block_Calculation

3.2 The Complete-Dimension Calculation
Technique

In section 3.1, we stated that each basic-block has the
same communication patterns. Therefore, a processor
only needs to construct the Send_Tables and the
Receive_Tables for the first basic-cycle in each dimension
of its local array. Then it can perform a multi-
dimensional array redistribution. In this section, we will
present a complete-dimension calculation (CDC)
technique. In the complete-dimension calculation
technique, a processor constructs the Send_Tables and the
Receive_Tables not only for array elements of the first
basic-cycle in each dimension of its local array, but also
for array elements in the first row of each dimension of its
local array, i.e.,)(

,
n

iSLA
"
[1:

"
n], where =" 0 n−1. In the

following, we will describe the complete-dimension
calculation technique in details.

Assume that a BC(s0, s1, ..., sn−1)→BC(t0, t1, ..., tn−1)
redistribution on an n-dimensional array)(nA =

]:1...,,:1,:1[110 −nnnnA over =)(nM]...,,,[110 −nmmmM is

given. For the complete-dimension calculation
technique, in the send phase, a source processor Pi

computes the destination processors for array elements in
)(
0,

n
iSLA [1: 0L],)(

1,
n
iSLA [1: 1L], …,)(

1,
n

niSLA − [1: 1−nL], where

Lk is the local array size in each dimension, i.e., Lk =
k

k

m

n
,

k = 0 to n−1. The destination processors of
)(
0,

n
iSLA [1: 0L],)(

1,
n
iSLA [1: 1L], …,)(

1,
n

niSLA − [1: 1−nL] can be

determined by the following Equation:

)("DP =

1

2

1

)(

×



















×

"
"

�

L
L

xF (9)

Where " =1 to n−1. The function)(xF is defined in
Equation 3.

For a BC(s0, s1, ..., sn−1)→BC(t0, t1, ..., tn−1)
redistribution, from Equation 9, we can obtain)0(DP ,

)1(DP , …,)1(−nDP that represent destination processors of
)(
0,

n
iSLA [1: 0L],)(

1,
n
iSLA [1: 1L], …,)(

1,
n
niSLA − [1: 1−nL],

respectively. Since the destination processors of
)(
0,

n
iSLA [1: 0L],)(

1,
n
iSLA [1: 1L], …,)(

1,
n
niSLA − [1: 1−nL] are

known, we can construct the Send_Tables for
)(
0,

n
iSLA [1: 0L],)(

1,
n
iSLA [1: 1L], …,)(

1,
n

niSLA − [1: 1−nL].

In the receive phase, a destination processor Pj

computes the source processors for array elements in
)(
0,

n
jDLA [1: 0L],)(

1,
n
jDLA [1: 1L], …,)(

1,
n

njDLA − [1: 1−nL],

where Lk is the local array size in each dimension, i.e., Lk =

k

k

m

n
, k = 0 to n−1. The source processors of

)(
0,

n
jDLA [1: 0L],)(

1,
n
jDLA [1: 1L], …,)(

1,
n

njDLA − [1: 1−nL] can

be determined by the following Equation,

)("SP =

1

2

1

)(

×



















×

"
"

�

L
L

xG (10)

Where " =1 to n−1. The function)(xG is defined in
Equation 7.

For a BC(s0, s1, ..., sn−1)→BC(t0, t1, ..., tn−1)
redistribution, from Equation 10, we can obtain)0(SP ,

)1(SP , …,)1(−nSP that represent the source processors of
)(
0,

n
iSLA [1: 0L],)(

1,
n
iSLA [1: 1L], …,)(

1,
n

niSLA − [1: 1−nL],

respectively. Since the source processors of
)(
0,

n
jDLA [1: 0L],)(

1,
n
jDLA [1: 1L], …,)(

1,
n

njDLA − [1: 1−nL] are

known, we can construct the Receive_Tables for
)(
0,

n
jDLA [1: 0L],)(

1,
n
jDLA [1: 1L], …,)(

1,
n

njDLA − [1: 1−nL].

Based on the Receive_Tables, we can unpack array
elements in the received messages to their appropriate
local array positions.

3.3 Theoretical Performance Comparisons of
BBC and CDC

The complete-dimension calculation technique has
higher indexing cost than that of the basic-block
calculation technique because it constructs larger
Send_Tables and Receive_Tables. However, the
complete-dimension calculation technique provides more
packing/unpacking information than the basic-block
calculation technique. It may have lower
packing/unpacking cost than that of the basic-block
calculation technique. In this section, we derive a
theoretical model to analyze the tradeoff between these
two methods.

Given a BC(s0, s1, ..., sn−1)→BC(t0, t1, ..., tn−1)
redistribution on an n-dimensional array)(nA over)(nM ,
the computation cost for an algorithm to perform the
redistribution, in general, can be modeled as follows:

Tcomp = Tindexing + T(un)packing (11)

We first construct a model for two-dimensional array
redistribution. Then, extend the model to multi-
dimensional array redistribution.

Given a BC(s0, s1)→BC(t0, t1) redistribution on a two-
dimensional array]:1,:1[10 nnA over],[10 mmM , the

indexing time of the basic-block calculation technique and
the complete-dimension calculation technique can be
modeled as follows,

Tindexing(BBC) = O(0BC) + O(1BC) (12)

Tindexing(CDC) = O(0L) + O(1L) (13)

where kBC is the size of basic-cycle in each dimension; Lk

is the local array size in each dimension, Lk =
k

k

m

n
, k =

0,1.
In the basic-block calculation technique, the

Send_Tables only store the indices of local array elements
in the first basic-cycle. A processor needs to calculate
the stride distance when it packs local array elements that
are in the rest of basic-cycles into messages. The time
for a processor to pack array elements to messages in each

row is O(
1

1

BC

L), where
1

1

BC

L is the number of basic-cycles

in dimension 1. There are L0 rows in a local array. The
time for a processor to pack array elements in dimension 1

to messages is O(
1

10
BC

LL ×). Since a processor packs local

array elements to messages in a row-major manner, the
time for a processor to pack array elements in dimension

zero to messages is O(
0

0

BC

L). Therefore, the time for a

processor to pack array elements to messages can be
modeled as follows,

T(un)packing(BBC) = O(
1

10
BC

LL ×) + O(
0

0

BC

L) (14)

In the complete-dimension calculation technique, the
Send_Tables store the indices of local array elements in

)(
0,

n
iSLA [1: 0L] and)(

1,
n

iSLA [1: 1L]. According to the

Send_Tables, a processor can pack local array elements
into messages directly. It does not need to calculate the
stride distance when it packs array elements that are not in
the first basic-cycle.

According to Equations 11 to 14, the computation
time of the complete-dimension calculation is less than
that of the basic-block calculation technique if and only if
the following equation is true.

Tcomp(CDC) < Tcomp(BBC) ⇔

O(0L + 1L) < O(0BC + 1BC +
1

10
BC

LL × +
0

0

BC

L) (15)

By truncating 0BC , 1BC and
0

0
BC
L from Tcomp(BBC), we

obtain the following equation:

Tcomp(CDC) < Tcomp(BBC) ⇔

O(0L + 1L) < O(
1

10
BC

LL ×) (16)

Given a BC(s0, s1, ..., sn−1)→BC(t0, t1, ..., tn−1)
redistribution on an n-dimensional array

]:1...,,:1,:1[110
)(

−= n
n nnnAA over =)(nM

]...,,,[110 −nmmmM , according to Equation 16, the

computation time of the complete-dimension calculation
is less than that of the basic-block calculation technique if
and only if the following equation is true.

Tcomp(CDC) < Tcomp(BBC) ⇔ O(110 −+++ nLLL �) <

O(02
1

1 LL
BC

L
n

n

n ××× −
−

−
�) (17)

4. Experimental Results

To evaluate the performance of the basic-block
calculation and the complete-dimension calculation
techniques, we have implemented these two techniques
along with the PITFALLS method [14] and the Prylli ’s
method [13] on an IBM SP2 parallel machine. All
algorithms were written in the single program multiple
data (SPMD) programming paradigm with C+MPI codes.
To get the experimental results, we used different
redistribution as test samples. For these redistribution
samples, we roughly classify them into the following three
types:

z Dimension Shift redistribution:
Ex: BC(x, y) to BC(y, x) of two-dimensional arrays,
and BC(x, y, z) to BC(y, z, x) of three-dimensional
arrays, where x, y and z are positive integers.

z Refinement redistribution:

Ex: BC(x, y) to BC(
p

x
,

q

y
) of two-dimensional arrays,

and BC(x, y, z) to BC(
p

x
,

q

y
,

r

z
) of three-dimensional

arrays, where p, q and r are factors of x, y and z,
respectively.

z Block Cyclic redistribution:
Ex: (BLOCK, BLOCK) to (CYCLIC, CYCLIC) of two-
dimensional arrays, and (BLOCK, BLOCK, BLOCK) to
(CYCLIC, CYCLIC, CYCLIC) of three-dimensional
arrays.

Table 1 shows the execution time of these four
algorithms to perform a BC(5, 8) to BC(8, 5) (i.e.,
dimension shift) redistribution with fixed array size on
different numbers of processors. From Table 1, we can
see that the indexing time of the basic-block calculation
technique is independent of the number of processors.
The indexing time of the Prylli ’ s method and the
PITFALLS method depends on the number of processors.
When the number of processors increases, the indexing
time of the Prylli ’ s method and the PITFALLS method
increases as well. The indexing time of the complete-
dimension calculation technique decreases when the
number of processors increases. The reason is that when
the array size is fixed and the number of processors is
increased, the number of array elements that will be
processed by the complete-dimension calculation
technique decreases.

For the same test sample, the complete-dimension
calculation technique has smaller packing/unpacking time
than that of other methods. The reason is that the
complete-dimension calculation technique provides more
packing/unpacking information than other methods.
This packing/unpacking information allows the complete-
dimension calculation technique to pack/unpack elements
directly. Other methods need to spend time to
calculation stride distance of array elements when
packing/unpacking array elements. The
packing/unpacking time of the basic-block calculation
technique, the PITFALLS method and the Prylli ’ s method
are similar.

All of these four methods use asynchronous
communication schemes. Therefore, the computation
and the communication overheads can be overlapped.
However, the basic-block calculation and the complete-
dimension calculation techniques unpack any received
messages in the receive phase while the PITFALLS and the
Prylli ’ s methods unpack messages in a specific order.
Therefore, in general, we can expect that the
communication time of the basic-block calculation and the
complete-dimension calculation techniques is less than or
equal to that of the PITFALLS and the Prylli ’ s methods.

From Table 1, we can see that the complete-
dimension calculation technique has the smallest
execution time when the number of processors is less than

or equal to 24 (8×3). The basic-block calculation
technique has the smallest execution time when the
number of processors is greater than or equal to 32 (8×4).
These phenomena match the theoretical analysis given in
Equation 17. We also observe that the execution time of
the basic-block calculation technique is smaller than that
of the PITFALLS and the Prylli ’ s methods for all test
samples.

Table 2 shows the performance of these four
algorithms to execute a BC(10, 20) to BC(5, 10) (i.e.,
Refinement) redistribution with fixed array size on
different numbers of processors. From Table 2, we have
similar observations as those described for Table 1.

Table 3 shows the execution time of these four
algorithms to perform a (BLOCK, BLOCK) to (CYCLIC,
CYCLIC) redistribution. In this case, the Send_Tables
and Receive_Tables constructed by the basic-block
calculation technique and the complete-dimension
calculation technique are the same. Therefore, they have
almost the same execution time. The execution time of
both methods for this redistribution is less than that of the
PITFALLS method and the Prylli ’ s method.

Table 4 shows the performance of these four
algorithms to execute these three redistribution with
various array size on a processor grid M[8,7]. From
Table 4, for the BC(5, 8) to BC(8, 5) and BC(10, 20) to
BC(5, 10) redistribution, we can see that the execution
time of the complete-dimension calculation technique is
less than that of the basic-block calculation technique for
all test samples. The reason can be explained by
Equation 17. Moreover, the execution time of both
methods is less than that of the PITFALLS method and the
Prylli ’ s method for all test samples.

For the (BLOCK, BLOCK) to (CYCLIC, CYCLIC)
redistribution, the execution time of these four algorithms
has the order Texec(CDC) ≈ Texec(BBC) << Texec(Prylli ’ s) <
Texec(PITFALLS). In this case, the PITFALLS method
and the Prylli ’ s method have very large execution time
compared to that of the BBC method and the CDC method.
The reason is that each processor needs to find out all
intersections between source and destination distribution
with all other processors in the PITFALLS and the Prylli ’ s
methods. The computation time of the PITFALLS and
the Prylli ’ s methods depends on the number of
intersections. In this case, there are N0/m0 + N1/m1

intersections between each source and destination
processor. Therefore, a processor needs to compute
N0/m0×m0 + N1/m1×m1 intersections which demands a
lot of computation time when N0 and N1 are large.

Table 5 shows the performance of these four
algorithms to execute different redistribution on three-
dimensional arrays. Each redistribution with various
array size on a processor grid M[2,4,7] with 56 processors
were tested. From Table 5, we have similar observations
as those described for Table 4.

5. Conclusions

In this paper, we have presented efficient algorithms
for performing multi-dimensional array redistribution.
Based on the basic-cycle calculation technique, we
presented a basic-block calculation technique and a
complete-dimension calculation technique. In these two
methods, the Send_Tables and the Receive_Tables are
used to store the packing/unpacking information of a
redistribution. From the information of Send_Tables and
Receive_Tables, we can efficiently perform the
redistribution of multidimensional arrays. The
theoretical model shows that the BBC method has smaller
indexing costs and performs well for the redistribution
with small array size. The CDC method has smaller
packing/unpacking costs and performs well when the array
size is large. The experimental results also show that our
algorithms can provide better performance than the
PITFALLS method and the Prylli ’ s method.

References

[1] S. Chatterjee, J. R. Gilbert, F. J. E. Long, R. Schreiber,
and S.-H. Teng, “Generating Local Address and
Communication Sets for Data Parallel Programs,” JPDC,
Vol. 26, pp. 72-84, 1995.

[2] Y.-C Chung, C.-H Hsu and S.-W Bai, “A Basic-Cycle
Calculation Technique for Efficient Dynamic Data
Redistribution,” IEEE Trans. on PDS, vol. 9, no. 4, pp.
359-377, April 1998.

[3] Frederic Desprez, Jack Dongarra, and Antoine
Petitet,“ Scheduling Block-Cyclic Array Redistribution,”
IEEE Trans. on PDS, vol. 9, no. 2, Feb. 1998.

[4] S. K. S. Gupta, S. D. Kaushik, C.-H. Huang, and P.
Sadayappan, “On Compiling Array Expressions for
Efficient Execution on Distributed-Memory Machines,”
JPDC, Vol. 32, pp. 155-172, 1996.

[5] S. Hiranandani, K. Kennedy, J. Mellor-Crammey, and A.
Sethi,” Compilation technique for block-cyclic
distribution,” In Proc. ACM Intl. Conf. on
Supercomputing, pp. 392-403, July 1994.

[6] Edgar T. Kalns, and Lionel M. Ni, “Processor Mapping
Technique Toward Efficient Data Redistribution, ” IEEE
Trans. on PDS, vol. 6, no. 12 , December 1995.

[7] S. D. Kaushik, C. H. Huang, J. Ramanujam, and P.
Sadayappan, “Multiphase array redistribution: Modeling
and evaluation,” In Proc. of IPPS, pp. 441-445, 1995.

[8] S. D. Kaushik, C. H. Huang, and P. Sadayappan,
“Efficient Index Set Generation for Compiling HPF

Array Statements on Distributed-Memory Machines,”
JPDC, Vol. 38, pp. 237-247, 1996.

[9] K. Kennedy, N. Nedeljkovic, and A. Sethi, “Efficient
address generation for block-cyclic distribution,” In Proc.
of Intl Conf. on Supercomputing, pp. 180-184, July 1995.

[10] P-Z. Lee and W. Y. Chen, “Compiler techniques
for determining data distribution and generating
communication sets on distributed-memory
multicomputers,” 29th IEEE Hawaii Intl. Conf. on System
Sciences, Maui, Hawaii, pp.537-546, Jan 1996.

[11] Young Won Lim, Prashanth B. Bhat, and Viktor, K.
Prasanna, “Efficient Algorithms for Block-Cyclic
Redistribution of Arrays,” Proc. of the Eighth IEEE
SPDP, pp. 74-83, 1996.

[12] Y. W. Lim, N. Park, and V. K. Prasanna, “Efficient
Algorithms for Multi-Dimensional Block-Cyclic
Redistribution of Arrays,” Proc. of the 26th ICPP, pp.
234-241, 1997.

[13] L. Prylli and B. Touranchean, “Fast runtime block
cyclic data redistribution on multiprocessors,” JPDC,
Vol. 45, pp. 63-72, Aug. 1997.

[14] S. Ramaswamy, B. Simons, and P. Banerjee,
“Optimization for Efficient Array Redistribution on
Distributed Memory Multicomputers,” JPDC, Vol. 38,
pp. 217-228, 1996.

[15] J. M. Stichnoth, D. O’Hallaron, and T. R. Gross,”
Generating communication for array statements:
Design, implementation, and evaluation,” JPDC, Vol.
21, pp. 150-159, 1994.

[16] Rajeev. Thakur, Alok. Choudhary, and J. Ramanujam,
“Efficient Algorithms for Array Redistribution, ” IEEE
Trans. on PDS, vol. 7, no. 6 , June, 1996.

[17] David W. Walker, Steve W. Otto, “Redistribution of
BLOCK-CYCLIC Data Distributions Using MPI,”
Concurrency: Practice and Experience, vol. 8, no. 9,
pp. 707-728, Nov. 1996.

[18] Akiyoshi Wakatani and Michael Wolfe, “A New
Approach to Array Redistribution: Strip Mining
Redistribution,” In Proc. of Parallel Architectures and
Languages, July 1994.

[19] Akiyoshi Wakatani and Michael Wolfe,
“Optimization of Array Redistribution for Distributed
Memory Multicomputers, ” short communication,
Parallel Computing, Vol. 21, Number 9, pp. 1485-1490,
September 1995.

Table 1: The time of four algorithms to execute a BC(5,8) to BC(8,5) redistribution on different number of
processors with fixed array size (N0, N1) = (400, 640).

Prylli’s PITFALLS BBC CDC

Processor
grid

Indexing Packing/
Unpacking

Total Indexing Packing/
Unpacking

Total Indexing Packing/
Unpacking

Total Indexing Packing/
Unpacking

Total

8×2 1.498 25.617 70.930 2.236 26.423 72.63 1.396 25.120 68.408 3.648 20.954 66.675
8×3 2.038 18.604 59.882 3.110 18.442 60.226 1.386 18.781 56.085 3.489 15.894 55.856
8×4 2.381 12.558 50.664 4.166 12.893 49.955 1.403 11.077 46.21 3.013 10.171 48.053
8×5 2.445 11.346 41.245 4.585 11.637 43.96 1.383 9.771 38.43 2.607 8.945 42.022
8×6 3.748 8.226 31.417 5.175 8.259 34.378 1.388 7.179 28.538 2.241 6.542 31.824
8×7 4.492 6.389 22.372 5.421 6.351 23.221 1.394 5.304 18.914 2.152 4.869 21.555

Time(ms)

Table 2: The time of four algorithms to execute a BC(10, 20) to BC(5, 10) redistribution on different number of
processors with fixed array size (N0, N1) = (400, 640).

Prylli’s PITFALLS BBC CDC

Processor
grid

Indexing Packing/
Unpacking

Total Indexing Packing/
Unpacking

Total Indexing Packing/
Unpacking

Total Indexing Packing/
Unpacking

Total

8×2 1.414 24.140 69.143 2.138 26.089 71.119 1.126 23.137 66.149 3.128 20.100 64.112
8×3 2.142 17.233 58.265 3.252 18.162 60.207 1.165 16.229 54.290 2.545 14.178 53.210
8×4 2.241 12.583 49.585 4.148 12.345 49.438 1.141 11.263 44.584 2.453 10.350 47.426
8×5 2.409 11.136 40.191 4.523 10.556 43.100 1.178 8.131 37.932 2.120 8.553 41.105
8×6 3.125 8.148 30.465 5.122 8.140 34.133 1.162 6.551 27.079 1.710 6.305 30.405
8×7 4.220 6.302 21.868 5.508 6.216 23.317 1.156 5.004 17.156 1.413 4.868 20.733

Time(ms)

Table 3: The time of four algorithms to execute a (BLOCK, BLOCK) to (CYCLIC, CYCLIC) redistribution on
different number of processors with fixed array size (N0, N1) = (400, 640).

Prylli’s PITFALLS BBC CDC

Processor
grid

Indexing Packing/
Unpacking

Total Indexing Packing/
Unpacking

Total Indexing Packing/
Unpacking

Total Indexing Packing/
Unpacking

Total

8×2 5.093 26.105 74.802 6.112 26.860 76.758 3.242 19.479 63.530 3.673 19.516 63.572
8×3 5.121 19.113 62.119 6.126 19.907 63.766 3.170 13.511 52.643 3.132 13.593 52.557
8×4 5.149 13.138 53.171 6.134 13.105 52.115 2.114 9.636 43.857 2.174 9.621 43.121
8×5 5.231 11.310 44.248 6.301 11.152 46.208 2.184 7.250 35.190 2.272 7.166 35.201
8×6 5.363 8.551 33.348 6.515 8.237 36.399 1.396 5.482 25.416 1.510 5.336 25.328
8×7 5.903 7.108 24.943 6.603 7.685 25.729 1.804 3.984 16.894 1.934 3.962 16.644

Time(ms)

Table 4: The time of different algorithms to
execute different redistribution on a two-
dimensional array with various array size on a 56-
node SP2, (N0, N1) = (1200, 1600).

Prylli’s PITFALLS BBC CDC

Array size BC(5, 8) to BC(8, 5)

(N0,N1) 28.367 35.202 27.771 26.763

(2N0,2N1) 144.630 150.013 130.002 123.407

(3N0,3N1) 321.218 335.736 317.212 297.565

(4N0,4N1) 511.111 534.277 503.035 489.143

BC(10, 20) to BC(5, 10)

(N0,N1) 27.326 33.454 27.277 25.968

(2N0,2N1) 144.408 168.581 134.247 120.319

(3N0,3N1) 327.077 342.153 305.005 291.011

(4N0,4N1) 518.172 539.914 508.474 484.268

 (BLOCK, BLOCK) to (CYCLIC, CYCLIC)

(N0,N1) 29.545 32.238 24.565 24.192

(2N0,2N1) 150.153 153.357 135.406 135.497

(3N0,3N1) 451.118 491.118 402.924 402.799

(4N0,4N1) 931.347 1045.838 566.802 565.324

 Time(ms)

Table 5: The time of different algorithms to
execute different redistribution on a three-
dimensional array with various array size on a 56-
node SP2, (N0, N1, N2) = (120, 180, 160).

Prylli’s PITFALLS BBC CDC

Array size BC(5, 10, 20) to BC(10, 20, 5)

(N0,N1,N2) 50.961 52.100 45.476 44.423

(2N0,2N1,2N2) 236.156 240.086 229.271 225.303

(3N0,3N1,3N2) 409.062 427.057 361.258 343.309

(4N0,4N1,4N2) 910.413 973.718 869.111 807.249

BC(10, 20, 30) to BC(1, 2, 3)

(N0,N1,N2) 51.319 51.292 49.134 43.952

(2N0,2N1,2N2) 244.283 255.721 238.697 227.676

(3N0,3N1,3N2) 445.187 469.731 410.987 368.073

(4N0,4N1,4N2) 812.320 873.900 750.708 631.445

 (BLOCK, BLOCK, BLOCK) to (CYCLIC, CYCLIC, CYCLIC)

(N0,N1,N2) 61.545 77.990 37.964 37.414

(2N0,2N1,2N2) 363.723 383.345 250.983 249.725

(3N0,3N1,3N2) 552.444 623.724 326.750 326.750

(4N0,4N1,4N2) 1411.378 1493.714 918.662 918.226

 Time(ms)

