Efficient Methods for Multi-Dimensional Array Redistribution
Yeh-Ching Chung and Ching-Hsien Hsu

Department of Information Engineering
Feng Chia University, Taichung, Taiwan 407, ROC
Tel : 886-4-4517250 x3746
Fax : 886-4-4516101
Email: ychung, chhsu@pine.iecs.fcu.edu.tw

Abstract memory compilers for those languages. Many methods

In this paper, we present efficient methods for multi- for performing array redistribution were proposed in the
dimensional array redistribution. Based on the previous literature [1-2, 5-7, 9-14, 16-19]. Due to the page
work, the basic-cycle calculation technique, we present alimitation, we will not describe these methods here. The
basic-block calculation (BBCand a complete-dimension details of these methods can be found in [2].
calculation (CDC) techniques. We have developed a In this paper, based on tHeasic-cycle calculation
theoretical model to analyze the computation costs oftechnique[2], we present dasic-block calculatior(BBC)
these two techniques. The theoretical model shows thag@nd acomplete-dimension calculatiof€DC) techniques
the BBC method has smaller indexing costs and performdor multi-dimensional array redistribution. The main
well for the redistribution with small array size. The idea of the basic-block calculation technique is first to use
CDC method has smaller packing/unpacking costs andthe basic-cycle calculation technique to determine
performs well when the array size is large. We also havesource/destination processors of some specific array
implemented these two techniques along with the€lements in a basic-block. From the source/destination
PITFALLS method and the Prylli's method on an IBM SP2 processor/data sets of a basic-block, we can efficiently
parallel machine. The experimental results show thatperform a redistribution. ~ The complete-dimension
the BBC method has the smallest execution time of thesgalculation technique also uses the basic-cycle calculation
four algorithms when the array size is small. The CDC technique to generate the communication sets of a
method has the smallest execution time of these foufedistribution. However, it generates the communication
algorithms when the array size is large. Furthermore, Sets for array elements in the first row of each dimension
the BBC method outperforms the PITFALLS method andof a local array. This will result in a high indexing
the Prylli's method for all test samples. overheads. But the packing/unpacking overheads can be

o i greatly reduced. These two techniques can be easily
Keywords: —array redistribution, the basic-block jmplemented in a parallelizing compiler, run-time systems,
calcul_atlon technique, the complete-dimension calculation, parallel programs. In this paper, we also developed a
technique. theoretical model to analyze the tradeoff between these

1. Introduction two techniques.

In some algorithms, such as multi-dimensional fast2- Preliminaries

Fourier transform, the Alternative Direction Implicit (ADI) To simplify the presentation, we u®O(S, S, ...
methqd for solving two-dimensional dlffl_Jsu_)n gquatlons_, Sv1) - BQto, t1, ..., to1) to represent the QYCLIC(s),
and linear algebra solvers, an array distribution that 'SCYCLIC(sl) CYCLIC(s1)) to (CYCLIC(to)

well-suited for one_phase may not be good for aCYCLIC(tl), ..., CYCLIC(tn-1)) redistribution for the rest
subsequent phase in terms of performance. Array

redistribution is required for those algorithms during run- of th[e) F}?rﬁgr'n 1: Ann-dimensional arrav is defined as th
time to enhance algorithm performance. Therefore, Delnion = (n)e_so a.a a.y S e. © as_ ©
many data parallel programming languages support runSet of array elementsA™ = Alin,,1:m,....1:ny] =
time primitives for array redistribution. Since array { T
redistribution is performed at run-time, there is a)
performance trade-off between the efficiency of new datadrray A”, denoted by|A™|, is equal taox Ny X ... X Ny,
decomposition for a subsequent phase of an algorithm angh this paper, we assume that array elements are stored in a
the cost of redistributing array among processors. Thusmemory by a row-major manner.

efficient methods for performing array redistribution are Definition 2: An n-dimensional processor grid is

of great importance for the development of distributed gefined as the set of processorsM® =

0<d,<n,-1,0</<n-1}. The size of

{ 5d0,d1,...,dn_1 O<d,=m -1
The number of processors o™,
, is equal tamo X my X ... X My.1.

M[mg, my, ..., m, 4]
0</<n-1}
denoted by|M

Definition 3: Given am-dimensional processor grid
M®@, the rank of processorp,, , is equal to

n-1
i=$(d, x
&
simplify the presentation, we also use procesBpito

denote P, . , , inthis paper, where 8i < |M ™ -1,
Definition 4: Given aBJ(s, Si, .., Sv1) » BU(to, Ly, ...,

tn.1) redistribution,BQsy, sy, ..., i), BQto, ta, ..., th1), S,

and t, are called thesource distribution the destination

distribution, the source distributionfactors and the
destination distribution factors of the redistribution,
respectively, where 8¢ < n-1.

Definition 5: Given aBQ(s, Si, ..., Sv1) » BUto, ty, ...,
t1) redistribution on A™ over M®, the source
(destination local array of processorP;, denoted by
SLA" (DLA)[1: &, 1:2-, ..., 1122], is defined as the

set of array elements that are distributed to proceBsor

n-1
[1m.), where &d,<m,-1, Os¢<n-1. To

(=k+1

(P) in the source (destination) distribution, i.e.,
n-1
|SLA£”’ = H L] where &is| M®| -1,

Definition 6: We define SLA? as the set of array
elements in the first row of the th dimension of SLA",
i.e., SLA? SLA [1,...,1, 17, 1,...,1], where & i <
|M(”’ -land 0</<n-1.

The number of array elements

in SLA" is equal to 2. SLA"[r] is defined as theth

array element of SLA? .

Definition 7: Given aB(s, S, ..., Sr-1) - BQo, 11, ...,
t.-1) redistribution on A™ over M™ , abasic-cycleof the
¢th dimension of SLA” (or DLA"), denoted byBC,,
is defined as BC, = lecm(s,,t,)/gcd(s,,t,), where 0
</<n-1.

Definition 8: Given aBJ(s, s, ..., Sv1) - BOto, ta, ...,
t-1) redistribution on A over M™, a basic-blockof
SLA” (or DLA"™) is defined as the multiplication of the

basic-cycles in each dimension.
block is equal to BC, X BC, X ... X BC,,.

3. Multi-dimensional Array Redistribution

To perform aBQso, Si, .., Sn-1) - BQto, ta, ..., tn-1)
redistribution, in general, a processor needs to comput
the communication sets. Based on the characteristics
a redistribution, we have the following lemmas. Due to
the page limitation, we will not present the proofs of
lemmas in this paper.

Geriom e
ommunication sets.

Lemma 1: Given 8Js, S1, ..., S-1) » BQto, t1, ..., th-1)
redistribution on A™ over M®™, for a source
(destination) processdp;, if the rank of the destination
(source) processor oBLAY[r,] (DLAYIR]) IS Py 0.0

where 0< i< |M<”’ -1, k=0to n-1, 0<j,sm, -1, and

1<r< [ﬁ;—D then the destination (source) processor of
SLA 15,1l] (DLA™[ro,1yy.hn]) is Py, where j

n-1 n-1
= [m) .1
g}(Jk 4:|'|k+1)
According to Lemma 1, the destination (source)
processor of SLA”[r,,r,,...r,,1 (DLA™[r,,1,,....1,,]) can

be determined by the rank of destination (source)
processors of SLAY[r,], SLA?[r],..., and SLA,[r,.]
(DLA™r,], DLAM[K],..., and DLA™ [r.,]).
how to efficiently determine the communication sets of
these array elements is important. The basic-block
calculation techniqgue and the complete-dimension
calculation technique are based on the basic-cycle
calculation technique proposed in [2]. The main idea of
the basic-cycle calculation technique is based on the
following lemma.
Lemma 2: Given a BQs)-B(t) and a
BQ(s/gcd(s,t)) - BQt/ged(s,t)) redistribution on a one-
dimensional array\[1:N] over M processors, for a source
(destination) processd?; (P)), if the destination (source)
processor of SLA[K] (DLA[K]) in BQs/gcds,
t)) - BAt/ged(s, t)) redistribution isP; (P;), then the
destination (source) processors SUfA[(k—-1)xgcd(s,t)+1:
kxgcd(s,t)] (DLA[(k—1)xgcd(s,t)+1:kxgcds,t)]) in BJs)
- BQ(t) redistribution will also be?; (P;), where 1< k <
IN/(Mxgcd(s,t))J m

Given a BJS, Si, ..., Sw-1)-BQto, t1, ..., tn1)
redistribution, according to Lemma 2, we know that the
communication sets dC (s/gcd(so,to), si/gcd(si,ti), ...,
Sn-1/gCd(Sh-1,th-1)) BQtd/gcd(so,to), ti/gcd(siti), ...,
t-1/gcd(sh-1,tn-1)) redistributioncan be used to generate the
communication sets (S, Si, ..., Sw-1) - B, ta, ..., th-1)
redistribution. Therefore, in the following discussion,
for aB(so, S, ..., Si-1) » BQto, ti, ..., t-1) redistribution,
we assume thacd(s, t;) is equal to 1, where<li <n - 1.
If gcds, t) is not equal to 1, we uss/gcds,t) and

n)
,n

Therefore,

—

The size of a basicti/gcd(s,tj) as the source and destination distribution

factors of the redistribution, respectively.
3.1 The Basic-Block Calculation Technique

Given a B((sy, s1)-»Bto, t;) redistribution on a
two-dimensional arrayA[1:no,1:n:] over M [m, my], to
erform the redistribution, we have to first construct the
According to Lemma 1, a source
processorP; only needs to determine the destination
processor sets forSLAY[1:BC) and SLA?[1:BCy].

Then it can generate the destination processor sets foaccording to the destination processors of array elements
SLA? [1:BC,, 1BCy]. For example, if the destination in SLA?[1: BC,, 1:BC]. However, if the value of
processors of SLA%[rq] and SLA?[r,] are P,, and BC0><_BC1_ is large, it may take a lot of time to compute the
- . o - destination processors of array elements in a basic-block
Po;, » respectively, the destination processBr= p, , by using Equation 1. In the basic-block calculation
of SLA?[r]lr,] can be determined by the following technique, instead of using the destination processors of
equation, array elements in the first basic-block, it uses a table
lookup method to pack array elements. GiveB@&s,,
RanKP) =j,xm+j, (1) s)-Bdt, t;) redistribution on a two-dimensional array
_ 5 _ A[l:no,1:ny] over M [mo, my], since the destination
For a source processd¥, if P =p,,, according 10 5cessors of SLA? [1:BC,, 1:BCi] can be determined by
Definition 3, we have i,=0/m;0 and i,=mod(i,m), DP. and DP

: . . © >
where Gi,<m, -1 and &i,<m -1. _S|r_1ce the values of SLA?[1:BC,] that have the same destination
i, and i, are known, the destination processors of

N) i processor to tablessend_Tablgswe can also determine
SLAG[1:BC)] and SLA7[1:BC)] can be determined by he gestination processors GLA? [1: BCo, 1:8C] from

if we gather the indices of array elements

the following equation, Send Tables
010 In the receive phase, according to Lemma 2, a
0 2 0 destination processoP; only needs to determine the
DPM:F(x)XE: O (2) source processor sets foDLA?[1:BC] and DLA?)
%C 0 [1:BCi]. Then it can generate the source processor sets
¢ Lhe,x for DLA® [1: BG, 1:BC]. For example, if the source

Where ¢ =0 and 1. The functionF(x) is defined as processors ofDLA®, [r] and DLA® [ri] are p,, and
Py, respectively, the source processoR of

Cnod(Bxs, m xt)0

F(X)ZB y - (3) DLA®[r]i] can be determined by the following
‘ equation,
wherex = 1 to BC, andfis defined as RanK P) =i, xm+i,, (5)
Ox O For a destination process#y, if P, =p, ., according to
B=i, +m x50 @ 2 processer, 1 B = P, °
05 0O Definition 3, we have j,=0/m0O and j,=jmodm,

For a two-dimensional array redistribution, from where & jo<m, -1 and & j<m -1. Since the value of

Equation 2, we can obtaiDR,, and DP, that represent Jo and j, are known, the source processors of
DLA%[1:BCo] and DLA? [1:BCi] can be determined by

the following equation,

the destination processors ofSLA%[1:BC] and

SLA? [1:BCi], respectively. According toDR, , DR,

. . 01 0
and Equation 1, a source proces®prcan determine the O~ 0O
destination processor of array elements in the first basic- sp, = G(x)xU 20 (6)
. t :
block of SLA?, i.e., SLA?[1: BC,, 1:BCy). © O: E
For a multi-dimensional array redistribution, each %QE&M

basic-block of a local array has the same communication)))
patterns. The following lemma states this characteristic. Where ¢ =0, 1. The functionG(x) is defined as

Lemma 3: Given 8, S1) -~ BQto, t1) redistribution

on a two-dimensional arra§{1:no, 1:n:] over M [mo, my], G(x) = Efnod(yxg, m, "Sé)g)
SLAZ[X, y], SLA? [x+koxBCo, Y], SLA®[x, y+kixBCi], O S, 0

SLA? [x+koxBCo, y+kixBCi] have the same destination \herex=1to BC. andyis defined as
processor, where 9i < mexm; -1, 1< x < lem(so, to), 1<y ‘ Ox O
< lem(sy, t), 1< ko< [ho /(lcm(so, to)xmp)dand kK k< [y y=1i, +m,;><g—m, (8)
/(lem(sy, t)xmy)] B » 0
Since each basic-block has the same communication g5 5 two-dimensional array redistribution, from

patterns, we can pack local array elements to message@quation 6, we can obtairsP, and SP, that represent

(2) .
the source processors of DLAG[1:BC] and Ly is the local array size in each dimension, Les i,

DLA?[1:BC,], respectively. According toSR, and M

SR,, we can also construct thReceive_Tabledor the K :n) 0 to n-l. " The destlnatnl)on processors of
SLAM[1:L,], SLAM[1:L], ..., SLA",[1:L,,] can be

destination processd?; as we construct th8end_Tables d ined by the followi o
in the send phase. Based on Receive_Tablesve can etermined by the following Equation:

unpack array elements from the received messages to their oo
appropriate destination local array positions. 0,0
The algorithm of the basic-block calculation DR, = F(x)xg: B 9
technique is given as follows. O
H‘” u_[n
Algorithm Basic_Block_Calculatids, .., Si-1, to, .., tha, Where /=1 to n-1. The function F(x) is defined in
No, -y Nn-1, Mo, .., Mh-1) Equation 3.

1. Construct Send_Tables For a BOSy, Si ..., Sw1)=BQto, ti, ..., tha)

2. For (j=myrank, z9;z< M|; j++, z++) redistribution, from Equation 9, we can obtaiDP,,

3. j=modj, M]); N

4. Pack the message for destination processortd DP,, ..., DP,, that represent destination processors of

out_bufferaccording tothe STs SLAY[1: L], SLAM[L:L], ..., SLAYL[1:L..]
If (out_buffer!= NULL) respectively. Since the destination processors of
Sendout_bufferto destination processde;; SLA"[1:L,], SLA"[1:L,], .., SLAY [1:L.,] are

5

6.

;' ConstructReceive_Tables known, we can construct theSend_Tables for
9

x =thenumber of messages to be received ") " R
For (z=0;z<x; z++) SLA,O[]-: Lo]l SLA,l[l: Ll]’ T SLAﬁ,n—l[l: Ln—]_]'

10. Receivedata setsn_bufferfrom any source processor; In the receive phase, a destination procesBpr
11. Unpack the received messages according to the RTs Ccomputes the source processors for array elements in
end_of_ Basic_Block_Calculation DLAT,[1:L,], DLAT[1:L], .., DLAT [1:L.],

whereLy is the local array size in each dimension, Les

3.2 The Complete-DimenSion Calculation &’ k = 0 to n-1. The source processors of

Technique M

(M 1- (M [1- (n) .
In section 3.1, we stated that each basic-block has theDLAJvO[l' L], DLATL[1:L], ..., DLAT,[1:L,,] can

same communication patterns. Therefore, a processoP€ determined by the following Equation,
only needs to construct theé&send_Tablesand the

Receive_Tablefor the first basic-cycle in each dimension %;B

of its local array. Then it can perform a multi- SR, = 6(xx0°0 (10)
dimensional array redistribution. In this section, we will O: %

present a complete-dimension calculation (CDC) aﬂlﬂ

technique. In the complete-dimension calculation

technique, a processor constructs $end_Tableand the =~ Where /=1 to n-1. The function G(x) is defined in
Receive_Tablesiot only for array elements of the first Equation 7.

basic-cycle in each dimension of its local array, but also For a BOS,, Si, ..., Sw1)—-BQto, ti, ..., tra)
for array elements in the first row of each dimension of its regijstribution, from Equation 10, we can obtaBR, ,
local array, i.e., SLA" [1:n,], where £=0 n-1. In the

i) i)] SR,, ..., SR, that represent the source processors of
following, we will describe the complete-dimension - . y .
calculation technique in details. SLAT[1:L,], suAN[L:L], .. SLATL[LiLL]

Assume that 80(s, Si, ..., Sr1) - B, ta, ..., th-1) respectively. Since the source processors of
redistribution on an n-dimensional array A® = DLAT,[1:L,], DLAT[1:L], .., DLAD ,[1:L,,] are
Alin,lin,..,1:n] over M™ = M[m,m,..,m_] is known, we can construct theReceive Tablesfor
given. For the complete-dimension calculation DLAT,[1:L,], DLAT[1:L], .., DLAT [1:L,].

technique, in the send phase, a source proceBSOr pased on theReceive Tableswe can unpack array
computes the destination processors for array elements ijements in the received messages to their appropriate
SLAR[1:L,], SLAN[L: L], ..., SLANL[L:L,,], where |gcal array positions.

3.3 Theoretical Performance Comparisons of TiunpackindBBO) = O(“g+) + O(%) (14)

C,
BBC and CDC

.) .) In the complete-dimension calculation technique, the
The complete-dimension calculation technique hassend_Tablestore the indices of local array elements in

higher indexing cost than that of the basic-block SLAY[1:L,] and SLAY[1:L,]. According to the
calculation technique because it constructs larger ° ° '1 '
Send_Tables and Receive Tables However, the Send_Tablesa processor can pack local array elements

complete-dimension calculation technique provides more'nt9 messages dlrectly. It does not need to calculate th_e
packing/unpacking information than the basic-block stride distance when it packs array elements that are not in
the first basic-cycle.

calculation technique. It may have lower > . .
packing/unpacking cost than that of the basic-block _ According to Equations 11 to 14, the computation
calculation technique. In this section, we derive g time of the complete-dimension calculation is less than

dhat of the basic-block calculation technique if and only if

theoretical model to analyze the tradeoff between thes ’ oo
the following equation is true.

two methods.

Given a B(s, S, ..., S-1)-BQto, t1, ..., ta1) TeomfCDC) < TeomBBO) =
redistribution on am-dimensional arrap™ over M®™, L
the computation cost for an algorithm to perform the O(L,+L,) <O(BC,+BC, + 5+ &) (15)

redistribution, in general, can be modeled as follows:

By truncating BC,, BC, and % from T¢o,md BBC), we

Teomp= Tindexing + Turypacking (11) obtain the following equation:
We first construct a model for two-dimensional array

redistribution. Then, extend the model to multi- TeomdCDC) < TeomdBBC) -
dimensional array redistribution.

) o O(L,+L) <O & 16
Given aBQ(so, S1) -~ BO(to, t1) redistribution on a two- (Lot L) <00 % (16)
dimensional array Al1:n,,1:n,] over M[m,,m], the Given a BOS, Su ..., Swi)—BQto, ti, ..., tn1)
indexing time of the basic-block calculation technique and redistribution on an n-dimensional array
the complete-dimension calculation technique can be o™ =Al:n,1:n,...,1:n,] over MM =

modeled as follows, M[m,,m,...m,_], according to Equation 16, the

Tingexind BBC) = O(BC,) + O(BC,) (12) computation time of the complete-dimension calculation
is less than that of the basic-block calculation technique if
Tingexind CDC) = O(L,) + O(L,) (13) and only if the following equation is true.
where BC, is the size of basic-cycle in each dimensibn; TeomdCDC) < TeomdBBC) = O(Lo + L, +---+L,,) <
L.
is the local array size in each dimensitn= % k = (BCnl_l XLy X2 L) 17
3
0.1. 4. Experimental Results
In the basic-block calculation technique, the P
Send_Tablesnly store the indices of local array elements To evaluate the performance of the basic-block

in the first basic-cycle. A processor needs to calculatecalculation and the complete-dimension calculation
the stride distance when it packs local array elements thatechniques, we have implemented these two techniques
are in the rest of basic-cycles into messages. The tima&long with thePITFALLS method [14] and thérylli’s

for a processor to pack array elements to messages in eachethod [13] on an IBM SP2 parallel machine. All
row is O(BL—él)- where Bt_él is the number of basic-cycles @algorithms were written. in the single program multiple
L . . data (SPMD) programming paradigm with C+MPI codes.
In dimension 1. There als rows in a local array. The To get the experimental results, we used different
time for a processor to pack array elements in dimension lredistribution as test samples. For these redistribution
to messages i©(4*). Since a processor packs local samples, we roughly classify them into the following three
array elements to messages in a row-major manner, thé&pes:

time for a processor to pack array elements in dimension

zero to messages (5). Therefore, the time for a ® Dimension Shift redistributian _
Ex: BQXx, y) to BQy, x) of two-dimensional arrays,

and B, y, 2) to BQYy, z, x) of three-dimensional
arrays, where, y andz are positive integers.
® Refinement redistributian

processor to pack array elements to messages can be
modeled as follows,

or equal to 24 (83). The basic-block calculation
technique has the smallest execution time when the

Xy z .] number of processors is greater than or equal to 82)(8

andBQx, y, 2) toBQ -, =,) of three-dimensional Thesephenomena matcthe theoretical analysis given in
arrays, wherep, g anpd rqare factors ofx, y and z Equatio_n 17. We also _observe t_hat the execution time of
! ’ ’ ’ the basic-block calculation technique is smaller than that

respectively. i’
e Block Cyciic redistribution g;r:]t;el:eI:ITFALLS and thePrylli’s methods for all test

Ex: (BLOCK BLOCK to (CYCLIC, CYCLIC) of two- Table 2 shows the performance of these four

dci:n\}tz:anlicc:)nect:IYaé:_a})és,é\ygEECKfBLhOCKdBLOC& to | algorithms to execute 8((10, 20) toBC5, 10) (i.e.,
(' ') of three-dimensiona Refinement) redistribution with fixed array size on

arrays. different numbers of processors. From Table 2, we have
Table 1 shows the execution time of these four Similar observations as those described for Table 1.

algorithms to perform aBQ5, 8) to BQS8, 5) (i.e., Table 3 shows the execution time of these four
dimension shift) redistribution with fixed array size on algorithms to perform aBLOCK BLOCK to (CYCLIC,
different numbers of processors. From Table 1, we canCYCLIC) redistribution. In this case, th&end_Tables
see that the indexing time of the basic-block calculationand Receive_Tablesconstructed by the basic-block
technique is independent of the number of processorscalculation technique and the complete-dimension
The indexing time of thePrylli's method and the calculation technique are the same. Therefore, they have
PITFALLS method depends on the number of processorsalmost the same execution time. The execution time of
When the number of processors increases, the indexin@oth methods for this redistribution is less than that of the
time of thePrylli's method and thé®ITFALLS method PITFALLSmethod and therylli’s method.
increases as well. The indexing time of the complete- Table 4 shows the performance of these four
dimension calculation technique decreases when theilgorithms to execute these three redistribution with
number of processors increases. The reason is that wheyarious array size on a processor ght8,7]. From
the array size is fixed and the number of processors isTable 4, for theB(5, 8) toB(@8, 5) andB((10, 20) to
increased, the number of array elements that will beBQ5, 10) redistribution, we can see that the execution
processed by the complete-dimension calculationtime of the complete-dimension calculation technique is
technique decreases. less than that of the basic-block calculation technique for

For the same test sample, the complete-dimensiorall test samples. The reason can be explained by
calculation technique has smaller packing/unpacking timeEquation 17. Moreover, the execution time of both
than that of other methods. The reason is that themethods is less than that of tRETFALLSmethod and the
complete-dimension calculation technique provides morePrylli’s method for all test samples.
packing/unpacking information than other methods. For the BLOCK BLOCK to (CYCLIC, CYCLIC)
This packing/unpacking information allows the complete- redistribution, the execution time of these four algorithms
dimension calculation technique to pack/unpack elementshas the ordefle,{CDC) = Teed BBO) << Teyed Prylli’s) <
directly. Other methods need to spend time to T, {PITFALLS. In this case, thePITFALLS method
calculation stride distance of array elements whenand thePrylli’s method have very large execution time
packing/unpacking array elements. The compared to that of thBBC method and th€DC method.
packing/unpacking time of the basic-block calculation The reason is that each processor needs to find out all
technique, thePITFALLS method and th®rylli’s method intersections between source and destination distribution
are similar. with all other processors in ti®dTFALLSand thePrylli’s

All of these four methods use asynchronous methods. The computation time of tR¢TFALLS and
communication schemes. Therefore, the computationthe Prylli’'s methods depends on the number of
and the communication overheads can be overlappedintersections. In this case, there adg/my, + NiJ/m,
However, the basic-block calculation and the complete-intersections between each source and destination
dimension calculation techniques unpack any receivedprocessor. Therefore, a processor needs to compute
messages in the receive phase whileRmeFALLSand the [INy/mykm, + INy/myCkmy, intersections which demands a
Prylli’s methods unpack messages in a specific order.ot of computation time wheN, andN; are large.
Therefore, in general, we can expect that the Table 5 shows the performance of these four
communication time of the basic-block calculation and the algorithms to execute different redistribution on three-
complete-dimension calculation techniques is less than odimensional arrays. Each redistribution with various
equal to that of th@ITFALLSand thePrylli’s methods. array size on a processor gij2,4,7] with 56 processors

From Table 1, we can see that the complete-were tested. From Table 5, we have similar observations
dimension calculation technique has the smallestas those described for Table 4.
execution time when the number of processors is less than

Ex: BOx, y) to Bq% , %) of two-dimensional arrays,

5. Conclusions

In this paper, we have presented efficient algorithms
for performing multi-dimensional array redistribution.
Based on the basic-cycle calculation technique, we
presented a basic-block calculation technique and a
complete-dimension calculation technique. In these twol10]
methods, theSend_Tablesand the Receive_ Tablesare
used to store the packing/unpacking information of a
redistribution. From the information &end_Tableand
Receive_Tables we can efficiently perform the
redistribution of multidimensional arrays. The [11]
theoretical model shows that tB8C method has smaller
indexing costs and performs well for the redistribution
with small array size. The&DC method has smaller
packing/unpacking costs and performs well when the array, 12]
size is large. The experimental results also show that our
algorithms can provide better performance than the
PITFALLSmethod and th@rylli’s method.

(9]

References [13]

[1] S. Chatterjee, J. R. Gilbert, F. J. E. Long, R. Schreiber,
and S.-H. Teng, “Generating Local Address and [14]
Communication Sets for Data Parallel Progrand®,DC,

Vol. 26, pp. 72-84, 1995.

Y.-C Chung, C.-H Hsu and S.-W Bai, “A Basic-Cycle
Calculation Technique for Efficient Dynamic Data [15]
Redistribution,”IEEE Trans on PDS vol. 9, no. 4, pp.
359-377, April 1998.

Frederic Desprez, Jack Dongarra, and Antoine
Petitet,” Scheduling Block-Cyclic Array Redistribution,”
IEEE Trans on PDS vol. 9, no. 2, Feb. 1998.

S. K. S. Gupta, S. D. Kaushik, C.-H. Huang, and P.
Sadayappan, “On Compiling Array Expressions for
Efficient Execution on Distributed-Memory Machines,”
JPDC,Vol. 32, pp. 155-172, 1996.

S. Hiranandani, K. Kennedy, J. Mellor-Crammey, and A.
Sethi,” Compilation technique for block-cyclic
distribution,” In Proc. ACM Intl. Conf. on
Supercomputingpp. 392-403, July 1994.

Edgar T. Kalns, and Lionel M. Ni, “Processor Mapping
Technique Toward Efficient Data Redistribution|EEE
Trans on PDS vol. 6, no. 12 , December 1995.

S. D. Kaushik, C. H. Huang, J. Ramanujam, and P.
Sadayappan, “Multiphase array redistribution: Modeling
and evaluation,” IrProc. of IPPS pp. 441-445, 1995.

S. D. Kaushik, C. H. Huang, and P. Sadayappan,
“Efficient Index Set Generation for Compiling HPF

(2]

(3]
[16]

[4]
[17]

(5]
(18]

(6]
[19]

(7]

(8]

Array Statements on Distributed-Memory Machines,”
JPDC, Vol. 38, pp. 237-247, 1996.

K. Kennedy, N. Nedeljkovic, and A. Sethi, “Efficient
address generation for block-cyclic distribution,”Rroc.

of Intl Conf. on Supercomputingp. 180-184, July 1995.

P-Z. Lee and W. Y. Chen, “Compiler techniques
for determining data distribution and generating
communication sets on distributed-memory
multicomputers,29" IEEE Hawaii Intl. Conf. on System
SciencesMaui, Hawaii, pp.537-546, Jan 1996.

Young Won Lim, Prashanth B. Bhat, and Viktor, K.
Prasanna, “Efficient Algorithms for Block-Cyclic
Redistribution of Arrays,”Proc. of the Eighth IEEE
SPDR pp. 74-83, 1996.

Y. W. Lim, N. Park, and V. K. Prasanna, “Efficient
Algorithms for Multi-Dimensional Block-Cyclic
Redistribution of Arrays,Proc. of the 28' ICPP, pp.
234-241, 1997.

L. Prylli and B. Touranchean, “Fast runtime block
cyclic data redistribution on multiprocessorgPDC,
Vol. 45, pp. 63-72, Aug. 1997.

S. Ramaswamy, B. Simons, and P. Banerjee,
“Optimization for Efficient Array Redistribution on
Distributed Memory Multicomputers JPDC, Vol. 38,

pp. 217-228, 1996.

J. M. Stichnoth, D. O’Hallaron, and T. R. Gross,”
Generating communication for array statements:
Design, implementation, and evaluatiodPDC, Vol.

21, pp. 150-159, 1994.

Rajeev. Thakur, Alok. Choudhary, and J. Ramanujam,
“Efficient Algorithms for Array Redistribution, TEEE
Trans on PDS vol. 7, no. 6 , June, 1996.

David W. Walker, Steve W. Otto, “Redistribution of
BLOCK-CYCLIC Data Distributions Using MPI,”
Concurrency: Practice and Experience, vol. 8, no. 9,
pp. 707-728, Nov. 1996.

Akiyoshi Wakatani and Michael Wolfe, “A New
Approach to Array Redistribution: Strip Mining
Redistribution,” InProc. of Parallel Architectures and
LanguagesJuly 1994.

Akiyoshi Wakatani and Michael Wolfe,
“Optimization of Array Redistribution for Distributed
Memory Multicomputers, " short communication,
Parallel Computing Vol. 21, Number 9, pp. 1485-1490,
September 1995.

Table 1: The time of four algorithms to execute a BC(5,8) to BC(8,5) redistribution on different number of
processors with fixed array sizby N;) = (400, 640).

Prylli's PITFALLS BBC CcCDC
Processor |ngexing Packing/ 1ota1 Indexing P29 Total Indexing P2KING Total indexing P2°KIN9/ 1oq

grid Unpacking Unpacking Unpacking Unpacking

8x2 1.498 25.617 70.930 2.236 26.423 72.63 1.396 25.120 68.408 3.648 20.954 66.675
8x3 2.038 18.604 59.882 3.110 18.442 60.226 1.386 18.781 56.085 3.489 15.894 55.856
8x4 2.381 12.558 50.664 4.166 12.893 49.955 1.403 11.077 46.21 3.013 10.171 48.053
8x5 2.445 11.346 41.245 4.585 11.637 43.96 1.383 9.771 38.43 2.607 8.945 42.022
8x6 3.748 8.226 31.417 5.175 8.259 34.378 1.388 7.179 28.538 2.241 6.542 31.824
8x7 4.492 6.389 22.372 5.421 6.351 23.221 1.394 5.304 18.914 2.152 4.869 21.555

Time(ms)

algorithms to execute a BC(10, 20) to BC(5, 10) redistribution on different number of
processors with fixed array sizbg N;) = (400, 640).

Table 2: The time of four

Prylli’s PITFALLS BBC CDC
Processor ngexing Packing/ T4ta1 Indexing P29 Total Indexing P2KINY Total indexing P2°KIN9/ 1o

grid Unpacking Unpacking Unpacking Unpacking

8x2 1.414 24.140 69.143 2.138 26.089 71.119 1.126 23.137 66.149 3.128 20.100 64.112
8x3 2.142 17.233 58.265 3.252 18.162 60.207 1.165 16.229 54.290 2.545 14.178 53.210
8x4 2.241 12.583 49.585 4.148 12.345 49.438 1.141 11.263 44.584 2.453 10.350 47.426
8x5 2.409 11.136 40.191 4.523 10.556 43.100 1.178 8.131 37.932 2.120 8.553 41.105
8x6 3.125 8.148 30.465 5.122 8.140 34.133 1.162 6.551 27.079 1.710 6.305 30.405
8x7 4.220 6.302 21.868 5.508 6.216 23.317 1.156 5.004 17.156 1.413 4.868 20.733

Time(ms)

Table 3: The time of four algorithms to executBAQCK BLOCK) to (CYCLIC, CYCLIC) redistribution on
different number of processors with fixed array siXg (N;) = (400, 640).

Prylli’s PITFALLS BBC CDC
Processor ngexing Packing/ T4ta1 Indexing P29 Total Indexing P2KINY Total indexing P2°KIN9/ 1o

grid Unpacking Unpacking Unpacking Unpacking

8x2 5.093 26.105 74.802 6.112 26.860 76.758 3.242 19.479 63.530 3.673 19.516 63.572
8x3 5.121 19.113 62.119 6.126 19.907 63.766 3.170 13.511 52.643 3.132 13.593 52.557
8x4 5.149 13.138 53.171 6.134 13.105 52.115 2.114 9.636 43.857 2.174 9.621 43.121
8x5 5.231 11.310 44.248 6.301 11.152 46.208 2.184 7.250 35.190 2.272 7.166 35.201
8x6 5.363 8.551 33.348 6.515 8.237 36.399 1.396 5.482 25.416 1.510 5.336 25.328
8x7 5.903 7.108 24.943 6.603 7.685 25.729 1.804 3.984 16.894 1.934 3.962 16.644

Time(ms)

Table 4: The time of different algorithms to Table 5: The time of different algorithms to
redistribution on a
dimensional array with various array size on a 56- dimensional array with various array size on a 56-
node SP2,No, N1, Np) = (120, 180, 160).

execute different

redistribution

on a

node SP2,No, Ni) = (1200, 1600).

two-

execute different

three-

Prylli's PITFALLS BBC CDC Prylli's _ PITFALLS BBC cDC
Array size BC(5, 8) to BC(8, 5) Array size BC(5, 10, 20) to BC(10, 20, 5)

(No,Ny) 28.367 35.202 27.771 26.763 (No.N.N;) 50.961 52.100 45.476 44.423
(2No,2N;) 144.630 150.013 130.002 123.407 (2No,2N;,2N;) 236.156 240.086 229.271 225.303
(3Ng,3N;) 321218 335.736 317.212 297.565 (3Np,3N;,3N;) 409.062 427.057 361.258 343.309
(4N, 4N;) 511111 534.277 503.035 489.143 (4No,4N;,4N;) 910.413 973.718 869.111 807.249

BC(10, 20) to BC(5, 10) BC(10, 20, 30) to BC(1, 2, 3)

(No,N1) 27.326 33.454 27.277 25.968 (No,N.,N3) 51.319 51.292 49.134 43.952
(2No,2N;) 144.408 168.581 134.247 120.319 (2No,2N1,2N,) 244.283 255.721 238.697 227.676
(3No,3N;) 327.077 342.153 305.005 291.011 (3No,3N;,3N;) 445.187 469.731 410.987 368.073
(4No,4N;) 518.172 539.914 508.474 484.268 (4Np,4N.,4N,) 812.320 873.900 750.708 631.445

(BLOCK, BLOCK) to (CYCLIC, CYCLIC) (BLOCK, BLOCK, BLOCK) to (CYCLIC, CYCLIC, CYCLIC)

(No,N3) 29.545 32.238 24.565 24.192 (No:N1Np) 61.545 77.990 37.964 37.414
(2No,2N;) 150.153 153.357 135.406 135.497 (2N,2N,,2N;) 363.723 383.345 250.983 249.725
(3No,3N;) 451.118 491.118 402.924 402.799 (3No,3N1,3N,) 552.444 623.724 326.750 326.750
(4No,4N;) 931.347 1045.838 566.802 565.324 (4N, 4N, 4N,) 1411.378 1493.714 918.662 918.226

