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Abstract

Matrix operations are the core of many linear
systems. Efficient matrix multiplication is critical to many
numerical applications, such as climate modeling,
molecular dynamics, computational fluid dynamics and
etc. Much research work has been done to improve the
performance of matrix operations. However, the majority
of these works is focused on two-dimensional (2D) matrix.
Very little research work has been done on three or higher
dimensional matrix. Recently, a new structure called
Extended Karnaugh Map Representation (EKMR) for n-
dimensional (nD) matrix representation has been
proposed, which provides better matrix operations
performance compared to the Traditional matrix
representation (TMR). The main idea of EKMR is to
represent any nD matrix by 2D matrices. Hence, efficient
algorithms design for nD matrices becomes less
complicated. Parallel matrix operation algorithms based
on EKMR and TMR are presented. Analysis and
experiments are conducted to assess their performance.
Both our analysis and experimental result show that
parallel algorithms based on EKMR outperform those
based on TMR.

Keywords: Parallel algorithm, Compiler, Matrix operation,
Multi-dimensional matrix, Data Structure.

1. Introduction
Matrix operations are the core of many linear
systems. Efficient matrix multiplication is critical to many
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numerical applications [4, 9, 16]. A significant part of
scientific codes consists of matrix computation, which
results in poor efficiency on today’s supercomputers.
Much research work has been done to improve the
performance of matrix operations [1-3, 5-8, 14, 11-13].

However, the majority of these works is focused on
two-dimensional (2D) matrix [1-3, 17]. Very little
research work, for example [10] has been done on three or
higher dimensional matrix. Fortran 90 provides a rich set
of array intrinsic functions, which operate on elements of
multi-dimensional array objects concurrently. Hence,
efficient matrix operations become an important issue.

A multi-dimensional matrix can be viewed as a
collection of 2D matrices. Hence, 2D matrices are used as
building blocks for multi-dimensional matrices. For
example, we can use 5 separate 4x3 2D matrices to
represent a 3D matrix of size 5x4x3. This scheme is
called Traditional Matrix Representation (TMR(n)),
where n is the dimension of the matrix. Researchers have
proposed many algorithms or techniques [1-3, 18] in
order to gain better performance for TMR(2). For example,
by applying re-permutation concept [2, 18] to reorder the
sequence of certain operations, we can obtain better
performance. Similarly, by using compression schemes in
sparse matrix operations, we can reduce storage
requirement substantially. However, these proposed
algorithms or techniques for 2D matrix usunally do not
perform well when applied to higher dimensional matrix.
The main reason is that the size of the matrix represented
by TMR(n) increases exponentially as the dimension
increases. Hence, multi-dimensional matrices represented
by TMR(n) become less manageable and difficult for
programmers to design efficient algorithms for matrix
operations.

A new structure called Extended Karnaugh Map



Representation (EKMR(n)) for nD matrix representation
was introduced recently [15], which provides better
matrix operations performance compared to the TMR(n).
The main idea of EKMR(n) is to represent any nD matrix
by a set of 2D matrices. This structure is suitable for
dense or sparse matrix without using compress scheme.
Hence, efficient algorithms design for nD matrices
becomes less complicated. In this work, we present
parallel algorithms for matrix operations in both EKMR
and TMR. We compare the performance of matrix-matrix
addition/subtraction, matrix-vector multiplication, and
matrix-matrix multiplication in both EKMR and TMR.
Our experimental results show that operations in the form
of EKMR outperform that in the form of TMR for most
cases.

The remainder of paper is organized as follows. In
Section 2, we briefly review the EKMR scheme. Section 3
presents the parallel algorithms for matrix-matrix
addition/subtraction, matrix-vector multiplication, and
matrix-matrix - multiplication operations in EKMR.
Analytic and experimental results are given in Section 4.
Finally, conclusions and future work is presented in
Section 5.

2. Multi-dimensional Matrix Representation
The EKMR was first proposed in [15]. Here, we give
a brief overview. The Karnaugh Map technique is thought
to be the most efficient tool to deal with Boolean
functions. It provides instant recognition of basic patterns,
can be used to represent all possible combination minimal

terms. Figure 1 displays some examples of Karnaugh Map.

It is clear that n-input Karnaugh Map uses n variables to
reserve memory storage and represent all the 2" possible
combinations. Furthermore, any n-input Karnaugh Map
can be drawn on a plane easily, where n <4.
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Figure 1: Karnaugh Map: (a) 1-input for f=X. (b) 2-input
for f=X+Y. (c) 3-input for f=XZ+XZ. (d) 4-input for
=YW YW,

We use the concept of Karnaugh Map to propose our
new matrix representation in EKMR. Since EKMR(1) is
simply a 1D array, no new definition is needed. Similarly,
EKMR(2) is the traditional 2D matrix. Therefore,
EKMR(n) has the same representation as TMR(n) for
n=1,2. We now consider EKMR(3) and EKMR(4) for
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these are basic building blocks of EKMR(n).

We use an example to illustrate the structure of
EKMR(3). Let A[k][:][j] denote a 3D matrix in TMR(3).
Figure 2 displays two ways to view a 3D matrix with a
size of 3x4x5. The corresponding EKMR, denoted by
ATi1[/1, is shown in Figure 3, where it is represented by a
2D matrix with the size of 4x(3x5). The basic difference
between TMR(3) and EKMR(3) is the placement of
elements along the direction indexed by k. In EKMR(3),
we use index variable i’ to indicate the row direction and j
to indicate the column direction. Notice that index i is the
same as i, whereas j is a combination of j and k. The
analogy between EKMR(3) and Karnaugh Map with
three-input is as follows(cf. Figure 3 and Figure 1(c)):
index variables i, j and k corresponds to variable X, Y and
Z, respectively.

The way to obtain EKMR(4) from EKMR(3) is
similar to obtain a four-input Kaunaugh map from a three-
input one. Figure 4 illustrates that a (2x4)x(3x5) matrix in
EKMR(4) can be used to represent a 2x3x4x5 matrix in
TMR(4). The structure of EKMR(n) can be found in [15].
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Figure 2: A 3x4x5 matrix in TMR(3): (a) A 3-D view, (b)
A2-D view.
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Figure 3: The structure of EKMR(3).
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Figure 4: EKMR(4) for a (2x4)x(3%5) matrix.



3. Parallel Algorithms for Matrix Operations
in EKMR(3)

Sequential algorithms for matrix operations based on
EKMR have been presented in our previous work [15]. In
this Section, we study data parallel algorithms for 3D
matrix operations. In general, a data parallel algorithm
can be divided into three phases: data partition, local
computation, and results collection. We briefly examine
these three phases and then present our parallel
algorithms.

3.1 Three Phases for Parallel Algorithms

eData Partition: To achieve parallelism, data is
partitioned and distributed into processors for parallel
operations. Row, column and 2D [11-13] are three
common schemes for data partition in matrix algorithm.
We have seen that matrices in TMR(3) are stored in a 3D
fashion. On the other hand, matrices in EKMR(3) are
stored in a 2D fashion. Figure 5 shows the three common
ways to perform data partition in TMR(3) and EKMR(3).
If non-continuous data are partitioned into a processor, we
must collect each blocks, store them in a buffer before
sending data to the processor. Usually, the cost for
collecting data and sending them to processors cannot be
ignored. Hence, data partition is an important issue in
designing parallel algorithm. Many researches have
worked on reducing the cost for collecting data.

eLocal Computation: The next step is to perform the
computation based on the algorithm and partial data. In
general, the work in this phase is the same as the original
sequential algorithm. However, there might be some
changes in the scope of operation data, i.e., changes of
indices for matrix operations.

eResults Collection: Results computed and scattered
among processors must be collected for a final report.
This phase is similar to data partition. If the partial results
computed are non-continuous, they must be broken into
blocks and then placed in their appropriate final locations.
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Figure 5: Partition schemes for the matrices A and A'in
TMR(3) and EKMR(3). (a) Row partition. (b) Column
partition. (c) 2D partition.
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3.2 Row Partition Algorithms

Since both TMR(n) and EKMR(n) employ row-major
storage scheme, we choose to use row partition in
designing our parallel algorithms. Other partition schemes
will be explored latter. To get better performance, we
duplicate vector x or matrix B on all processors and do
partition on matrix A in all our design. The data partition
and results collection procedures are pretty much the
same for all our matrix algorithms. We examine these two
first, and then focus on local computation.

3.2.1 Data Partition and Results Collection

Let A[£][i][j/] be an nxnxn matrix represented in
TMR(3) and there are P processors in the parallel system.
We have seen that TMR(3) can be viewed as a collection
(along the k direction) of 2D matrices (along the ixj
direction). Therefore, row partition for TMR(3) can be
obtained by partitioning each 2D matrix row-wise and
repeating the partition along the & direction. More
precisely, let r = n % P, and row_size denote the number
of data rows assigned to each processor. With some

arithmetic, it can be seen that row_size= |-n / p-| for the

first r processors and row_size= Ln/ pJ for the

remaining (P-r) processors.

Let ATiI[j]1 be an nx(nxn) matrix represented in
EKMR(3). It can be seen that matrix A’ consists of 7 Tows
and each row contains n° elements. Partition A" by row
means that we should assign row_size rows to each
processor, where row_size is the same as that in the case
of TMR(3). Since EKMR(3) is basically a 2D matrix,
elements in the same row are stored continuously. There
is no collection involved in the data partition phase.

3.2.2 Local Computation

In general, the local computation is the same as the
original sequential algorithm presented in [15], except
that there might be some changes in the scope of
operation data. For briefness, we do not repeat our work
and list the matrix-matrix multiplication algorithm using
P processors for TMR and EKMR in Figures 6 and 7,
respectively.

3.3 Column and 2D Partition Algorithms

Since data in each row is divided among P
processors in the column partition, we need to collect
pieces of data in the beginning of data partition phase for
both TMR and EKMR based algorithms. Moreover, after
the local computation each processor has only partial
result for matrix-vector or matrix-matrix multiplication.

Hence, some extra work is needed in order to obtain
final result during the results collections phase. For
briefness, the details are omitted here.



Data Partition Procedure algorithm
/¥Local Computation Procedure*/
for(p id=0;p id<P;p id ++)
row_size=|n/ pJ or I-” / p-l. /*To change the scope

for the index of sequential algorithm*/
for(k=0;k<n;k++)
for (i=0;1i<row_size ; i++)
for (j=0;j<n;j++)
for(m=0;m<n;m++)
CIKIE = CLEIE + ALKIA[m] x Blk)m][/T;
*local result matrix size is row_sizexn®*/
Results Collection Procedure algorithm
Figure 6: Row partition matrix-matrix multiplication
algorithm in TMR(3).

Data Partition Procedure algorithm
/*Local Computation Procedure*/
for(p id=0;p id<P;p_ id++)
row_size=\n/ pJ or l-n / p—l. [*To change the scope

for the index of sequential algorithm*/
for(j=0;j<n;j++)
v=jXxn;
for (i=0;i<row_size ;i++)
for(m=0;m<n;m++)
r=mxn;
for (k=0:k<n;k++)
ClAk+r=CTillk+r]1+A T [k+VIxB [l [k+1];
*local result matrix size is row_sizexn®*/
Results Collection Procedure algorithm
Figure 7: Row partition matrix-matrix multiplication
algorithm in EKMR(3).

The 2D partition is a combination of row and column
partition. Hence, piecewise data needs to be collected in
buffer before distributed among processors in both
representation schemes. Similarly, extra work needs to be
done during the results collection phase. These algorithms
are also omitted here.

4. Performance Evaluation

Parallel algorithms based on both matrix
representations are analyzed in this Section. Moreover,
some experiments were conducted in order to gain further
insights. All our results indicate that algorithms based on
EKMR are more efficient than that of TMR.

4.1 Analysis

In previous Sections, we have seen that all our
parallel algorithms consist of three phases. In comparison
algorithms based on two representation schemes, the
amount of work for local computation are pretty much the
same. This makes data partition and result collection
become two important roles in deciding final
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performance.

In practice, there is data or task dependency [11-13]
in parallel algorithms. Some extra works are needed to
eliminate dependency. Fortunately, there is no data
dependency in matrix operations we studied in this paper.
‘We have mentioned that buffer and collection is needed if
original data partitioned to a processor is not stored in
continuous memory. We choose (1) number of data
elements to be collected and (2) number of non-
continuous data blocks as our evaluation metrics. This is
because the first number indicates how many copy
operations are needed to move data elements to buffer.
The second number indicates how many jumps are needed
during the copy operations, which affects cache usage
(respectively, disk seek time) for in-of-core (respectively,
out-of core) algorithms. We now proceed to find these
numbers. Assuming that there are #* elements in matrix A,
which is to be partitioned into P processors based on row
or column partition. For simplicity, we further assume that
n is a multiple of P.

sRow partition: For TMR(3), the first n/P rows in the
first plane is assigned to processor 1, then the second n/P
rows assigned to processor 2 and so on(c.f. Fig 5(a) for
the case of P=4). There are » planes along the & direction.
Hence, there are n non-continuous data blocks for
processor 1, so are other processors. Therefore, the total
number of non-continuous data segments would be
summed to Pn. Since data assigned to each processor is
not continuous, a buffer is needed for temporary storage
and all the n® elements will be copied to buffer. The
structure of EKMR(3) is exactly a 2D matrix in row-major
storage. Therefore, all elements assigned to each
processor are in continuous memory locations. Hence, no
buffer is needed and both metrics are 0.

oColumn partition: For TMR(3), there are n non-
continuous data blocks for elements in the first plane
assigned to processor 1(c.f. Fig 5(b)). Again, there are n
planes along the k direction. Hence, there are n* non-
continuous blocks for data assigned to each processor.
This gives a total of Pn* non-continuous data blocks. For
EKMR(3), there are n non-continuous blocks(along the /
direction) for each processor. Hence, there are Pn non-
continuous data blocks for all processor. Since in both
cases data are stored in non-continuous blocks, there are
n’ data elements to be collected.

2D partition: Assuming that n’ elements are to be
partitioned into PxQ processors. For TMR(3), there are
n/P non-continuous blocks assigned to processor 1 in the
first plane and » total planes. Hence, the number of non-
continuous data blocks is PxQxnx(n/P), which gives Qn®.
Similarly, there is only one plane in EKMR(3). Therefore,
the number of non-continuous data blocks is Qn. All n®
elements need to be collected in both cases, since they are
stored in non-continuous memory.

The analytical results for three data partition



schemes in TMR(3) and EKMR(3) are summarized in
Table 1. It can be seen that our proposed parallel
algorithms based on EKMR(3) should perform better than
those based on TMR(3) regardless of in- or our-of-core
environment. Results for TMR(4) and EKMR(4) can be
obtained similarly. Table 1 also summarizes their lost of a
matrix with size nxnxnxn.

Table 1. Cost for partition procedure in three- and four-
dimensional matrices.

# of elements _to be collected #_of Non-Continuous blocks
TMR(3)| EKMR(3) | TMR(4)| EKMR(4)| TMR(3)| EKMR(3)| TMR(4)| EKMR(4)
Row Partition 3 4 2
P n 0 n 0 Pn 0 Pr 0
Column Partition 7 e 7 7 Pt Pn P Pn
{P processor)
2D Partition 3 3 4 4 2 3
PQpmoeessony | " | " p | 7 O] o jor| &

4.2 Experimental results

To assess the performance of our proposed
algorithms, we have implemented them on an IBM SP2
machine. Parallel algorithms are implemented in C+MPI
using SPMD model. Experiments for parallel algorithms
consist of two parts. In the first part, we study effects of
matrix size, which were run on SP2 with three nodes. In
the second part, we investigate effect of number of
processors in the parallel machine, which were run with a
fixed matrix size 100x100x100 for 3D matrix and size
30x30x30x30 for 4D matrix and processor number
varying from 2 to 16.

4.2.1 Performance of Parallel Algorithms in EKMR(3)
Performance of sequential algorithms in EKMR(3)

have presented in [15]. We now study performance of

parallel algorithms. In addition to execution time, we use

a second comparison metric called relative performance,

which is defined as

Time(TMR _ Alg)-Time(EKMR_ Alg)\.

Time(TMR _ Alg)

performance(%) =

4.2.1.1 Row partition

From Figure 8(a), we can find that our proposed
addition/subtraction algorithms outperform those in
TMR(3) by about 50~85% for different matrix sizes on an
SP2 with three nodes. The relative performance for
different processor numbers is shown in Figure 8(b). We
can see that EKMR algorithms are better than TMR
algorithm by about 60~85% in relative performance.
Results for matrix-vector multiplication is shown in
Figure 9, where we can see that EKMR algorithm is faster
than TMR algorithm by about 35~60% in execution time
and about 40~75% better in relative performance. Results
for matrix-matrix multiplication is displayed in Figure 10.
It can seen that EKMR algorithm is faster than TMR
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algorithm by about 6~18% in execution time and about
8~17% better in relative performance.

06
o5
05

T TMR-Add
BIEKMR-Add
o 02 B TMR-Sub
@ EKMR-Sub

TiTadd
—®=sub

(a) (b)
Figure 8: (a) Execution time for matrix-matrix
addition/subtraction with 3 processors. (b) Relative

performance for matrix-matrix addition/subtraction.
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Figure 9: (a) Execution time for matrix-vector
multiplication operations with 3 processors. (b) Relative
performance for matrix-vector multiplication.
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Figure 10: (a) Execution time for matrix-matrix
multiplication with 3 processors. (b) Relative
performance for matrix-matrix multiplication.
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4.2.1.2 Column and 2D partitions

Experiments for column partition were also
conducted. Results indicate that algorithm based on
EKMR outperforms that based on TMR. More precisely,
the difference is about 10~25% in execution time and
10~20% in relative performance for addition/subtraction
operation, about 6~10% in execution time and 6~15% in
relative performance for matrix-vector multiplication, and
about 3~8% in execution and 3~12% in relative
performance for matrix-matrix multiplication.

The relative performance of 120x120x120 matrix-
matrix multiplication with different numbers of
processors has been studied. Results show that the EKMR
algorithm is about 5~10% faster than the TMR algorithm.



4.2.2 Performance of Algorithms in EKMR(4)

To see how well the EKMR scheme can be extended
to higher dimensions, we move our focus to EKMR(4).
We have seen, in Table 1, that the row partition scheme
should perform better than column and 2D partition. We
have implemented matrix operation algorithms based on
row partition and conducted some experiments in order to
gain further insight. As we expected experimental results
indicate that algorithm based on EKMR outperforms that
based on TMR. In fact, the difference is about 55~62% in
execution time and 55~63% in relative performance for
addition/subtraction  operation, about 40~50% in
execution time and 40~60% in relative performance for
matrix-vector multiplication, and about 25~30% in
execution and 25~40% in relative performance for
matrix-matrix multiplication.

5. Conclusions and Further Work

A new structure called EKMR for representation of
multi-dimensional matrix has been proposed recently. The
structure consists of a tree with 2D matrices in its leaves.
Parallel matrix operation algorithms based on EKMR are
developed. Our analysis and experimental results show
that algorithms based on EKMR outperform those based
on TMR. We plan to work on the following directions in
the future: (1) study cache effect on different algorithms,
(2) develop compression schemes for sparse matrices in
the form of EKMR and TMR, (3) apply our proposed
algorithms to research in multi-dimensional data cube,
and (4) add-other schemes, such as tensor product or
Strassen’s method, in our matrix multiplication algorithm
to further improve performance.
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