A Marching Voxels Method for Surface Rendering of Volume Data'

Chin-Feng Lin, Don-Lin Yang, and Yeh-Ching Chung’
Department of Information Engineering,
Feng Chia University, Taichung, Taiwan 407
E-mail: {cflin, dlyang, ychung]@iecs.fcu.edu.tw

Abstract

The marching cubes method is a well-known surface
extraction method by using the surface configurations of
cubes for surface rendering of volume data. The
marching cubes method has three main disadvantages,
time consuming, ambiguity, and holes generation. All
these disadvantages come from the use of the surface
configurations of cubes. In this paper, we propose an
efficient surface extraction method, the marching voxels
method, for surface rendering of volume data. Instead of
using the surface configurations of cubes, the marching
voxels method first generates triangles for inner voxels.
Then it combines the triangles of inner voxels to produce
the surface of an object. Finally, the surface of an object
is projected to a plane to form the final image. Since the
marching voxels method considers the combination of
triangles of voxels not cubes and the combination of
triangles is performed in a deterministic way, there is
neither ambiguous case of a combination nor holes for
the generated surface. The experimental results show
that the marching voxels method saves about 30% of the
surface rendering time compared to the marching cubes
method for test samples.

Index Terms: Surface Rendering, Surface Extraction,
Marching voxels Method, Marching Cubes Method.

1. Introduction

In computer graphic, rendering is very important for
volume visualization [5,23]. The surface rendering and
the volume rendering are two major categories of
rendering for volume visualization. For the surface
rendering, it only shows the interested surface information

of objects. In the volume rendering, it shows both inner

and outer information of objects [4,6,26]. Since the
surface rendering only handles the outer visible voxels of

objects [2,8,15,16,18,22,24], it takes less rendering time
than the volume rendering.

In the surface rendering, surface extraction is an
important process to get visible and meaningful voxels
from three-dimensional objects [1,3,9,11-14,17,19-20]
and is a significant research subject. The marching
cubes method proposed in [10] is a well-known surface
extraction method by using the surface configurations of a
cube for surface rendering of volume data. In the
marching cubes method, a volume data is first partitioned
into cubes. Each cube consists of eight voxels. Then it
decides the surface configuration of each cube according
to 15 surface configurations as shown in Figure 1. After
determining the surface configuration of each cube, the
surfaces of every two adjacent neighbor cubes are
combined to form the surface of an object. The surface
of an object is then projected to a plane to form the final
image.

(k)] () [C) (©)
Figure 1. The 15 surface configurations of a cube.

The marching cubes method has several
disadvantages. First, it takes a lot of time to perform
surface rendering of large volume data. Second, during
the surface combination of every two adjacent neighbor
cubes, it may produce a wrong surface for the cubes due
to more than one choice of the surface configuration of a
cube. Third, it may produce some holes for the
generated surface during the surface combination of every

! This work was partially supported by the NSC of ROC under contract NSC89-2213-E-035-032.

? The corresponding author.

0-7695-1007-8/01 $10.00© 2001 IEEE

two adjacent neighbor cubes. Some techniques have
been proposed to solve the second and the third problems.
For example, C. Montani er al. [11] and R. Seidel (21]
proposed techniques to solve the ambiguous problem and
the holes problem, respectively.

To overcome the disadvantages mentioned above, in
this paper we propose an efficient surface extraction
method, the marching voxels method, for surface
rendering of volume data. Instead of generating the
surface configurations of cubes, the marching voxels
method first generates triangles for inner voxels. Then it
combines the triangles of inner voxels to produce the
surface of an object. Finally, the surface of an object is
projected to a plane to form the final image. Since the
marching voxels method considers the combination of
triangles of voxels not cubes and the combination of
triangles is performed in a deterministic way, there is
neither ambiguous case of a combination nor holes for the
generated surface. Therefore, the marching voxels
method takes less time to extract surface of a volume data
compared to the marching cubes method.

To evaluate the performance of the marching voxels
method, we compare the proposed method along with the
marching cubes method on an IBM RS6000 CPU. Three
volume datasets are used as test samples. The
experimental results show that the marching voxels
method can save about 30% of the surface rendering time
compared to the marching cubes method for test samples.

The rest of the paper is organized as follows. The
marching voxels mcthod will be described in Section 2.
In Section 3, we comparc the performance of the
marching voxels method with the marching cubes method
on an SP2 parallel machine and analyze the performance
improvement of the marching voxels method.

2. The marching voxels method

As mentioned in the introduction section, the
marching cubes method has three main disadvantages,
time consuming, ambiguity. and holes generation. All
these disadvantages come from the use of the surface
configurations of cubes. In the marching voxels method,
we consider the relations of surfaces of voxels. To
generate the surface of a volume data, the marching
voxels method consists three phases, the triangles
generation phase, the polygons combination phase, and
the surface projection phase. In the triangles generation
phase, triangles are produced for inner voxels. In the
polygons combination phase, polygons of voxels are
combined according to the common vertices of polyéons.
In the surface projection phase, the surface of an object is
projected to a plane to form the final image. Since the
marching voxels method considers the combination of
triangles of voxels not cubes, its execution is faster than
the marching cubes method. In the marching voxels

307

method, the combination of polygons is performed in a
deterministic way. The ambiguity and holes generation
problems of the marching cubes method are also
eliminated. In the following, we describe the marching
voxels method in detail and analyze the marching voxels
method.

2.1 The algorithm of the marching voxels method

We first define some notations used in the marching
voxels method.

Definition 1: A volume data V = {vi= (x;, ¥, z) l i =
1, 2, ..., n} is defined as a finite set of voxels that form a
cube, where (x;, yi,, 7)) is the coordinate of v; and x;, y;, z; >
0.

Definition 2: An object O = {v;, | vi, € V and d(v;,)
= D} is defined as a set of voxels whose density d(v;) are
greater than or equal to a threshold D. A voxel in O is
called the inner voxel, otherwise the outer voxel.

Definition 3; Two voxels, v; = (x;, ¥, z) and v; = (x;,
¥; Zj), are neighbors if [y; — xl + by, -yl + 1z, — z1= 1. For
voxel v; = (x;, yin z;). we define voxel (x; + 1, y;, z;) as its
neighbor in direction x*, voxel (x; — 1, yi z) as its
neighbor in direction x~, voxel (x;, y; + 1, z) as its
neighbor in direction y*, voxel (x, y; — 1, z) as its
neighbor in direction y-, voxel (x, yi, z + 1) as its
neighbor in direction z*, and voxel (xi. y, z; — 1) as its
neighbor in direction z°.

Definition 4: A voxel v; = (x;, v, z;) and its neighbors
form eight quadrants. We define quadrants (x*, y*, z"),
Wy oy). Gy Y Yy), (L Yy,),
(7, ¥y, 2) and (", y*, z) as the first to the eighth
quadrants of voxel v; = (x;, y;, 2;), respeetively.

The first phase of the marching voxels method is to
generate triangles for inner voxels. Since each inner
voxel has eight quadrants, eight triangles are generated.
Each triangle is intersected with the x-axis, y-axis, and
z-axis. The intersection points of triangles of voxel v; on
X0, vty 24 7 are labeled as vi(x), vi(x), vi(3). v,
vi(z"), and v,(z'). respectively. The vertex of a triangle is
in the middle of two adjacent voxels. An example is
given in Figure 2.

Figure 2. An example of eight triangles generated for an
inner voxel.

The second phase of the marching voxels method is
1o combine polygons of voxels to form the surface of an
object. It consists of four steps. In the first step, it tries
to combine triangles of every two adjacent inner voxels
on the x"-axis starting from voxels in the yz plane with x;
=(0. We have the following case.

Case 1.1: Combine two triangles into a quadrangle.
Given two adjacent inner voxels v; = (xi, y;, z;) and v; =
(x#+1, y;, z)), the triangle in the first quadrant of v; and the
triangle in the second quadrant of v; have a common
vertex vi{(x") = vi(x") on the x-axis. To combine these
two triangles, any two vertices that share edges with the
common vertex vi(x") are jointed by an edge if they are in
the same plane. After the combination, we can get a
quadrangle. For example, Figure 3(a) shows two
triangles of inner voxels v; and v; in the first quadrant and
the second quadrant of v; and v;, respectively. Vertices
vi(y") and v(y") share edges with vi(x") = v(x) on the
x-axis. Since v{(y") and v{y") are in the same plane (the
xy plane), edge (vi(y"), v{(y") is added. Edge (v{z).
v,(z*)) is added as well with a similar reason. As a result,
a quadrangle is formed and is shown in Figure 3(b).

We can get quadrangles in the forth, the fifth, and
the eighth quadrants of voxel v; in a similar manner.

Figure 3. An example of combining two triangles.

In the second step, it tries to combine triangles or
quadrangles of every two adjacent inner voxels on the
y*-axis starting from voxels in the xz plane with y; = 0.
In the first step, two triangles may be combined into a
quadrangle. To perform the combination process in this
step, we have three cases. The first case is to combine
two triangles into a quadrangle. The second case is to
combine a triangle and a quadrangle into a pentagon.
The third case is t0 combine two quadrangles into a
quadrangle. Given two adjacent inner voxels v; = (x;, yi.
z) and v; = (x, y+1, z), for these three cases, the
combination of two polygons is similar to that of
described in the first step, that is, any two vertices that
share edges with the common vertex v{(y") are jointed by
an edge if they are in the same plane. The combination
is also applied to polygons in the second, the seventh, and
the eighth quadrants of voxel v;, We now describe the
combinations of these three cases in detail.

Case 2.1: Combine two triangles into a quadrangle.
This case is the same as Case 1.1.

Case 2.2: Combine a triangle and a quadrangle into
a pentagon. An example is shown in Figure 4. In

308

Figure 4(a)., for voxels v; and v, the quadrangle of v; and
the triangle of v; have a common vertex vi(y"). Vertices
vi(z") and v(Z") share edges with v(y") on the y-axis.
Since vi(z") and v(z") are in the same plane (the yz plane),
edge (v(zh), wi(2") is added. Edge (v(y"). wlx") is
added as well with a similar reason. As a result, a
pentagon is formed and is shown in Figure 4(b).

Figure 4. An example of combining a triangle and a
quadrangle.

Case 2.3: Combine two quadrangles into a
quadrangle. An example is shown in Figure S. 1In
Figure 5(a), for voxels v; and v, the quadrangle of v; and
the quadrangle of v, have two common vertices vi(y") and
viy"). Vertices vi(z") and vi(z") share edges with vi(y")
on the y-axis. Since v,(z") and v(z") are in the same
plane (the yz plane), edge (vi(z*). w(z")) is added.
Vertices v(z") and v(z") share edges with v(y") on the
y-axis. Since v(z") and v(z") are in the same plane (the
yz plane), edge (v(z"). v(z") is added. As a result, a
quadrangle is formed and is shown in Figure 5(b).

Figure 5. An example of combining two quadrangles into
a quadrangle.

In the third step, it tries to combine triangles,
quadrangles, or pentagons of every two adjacent voxels
on the z'-axis starting from voxels in the xy plane with z;
= 0. The combination process is performed when two
adjacent voxels are inner voxels. To perform the
combination process in this step, we have seven cases:
two triangles, a triangle and a quadrangle, a triangle and a
pentagon, two quadrangles. a quadrangle and a pentagon,
two pentagons, and a hexagon and a triangle. Given two
adjacent inner voxels v; = (x;, yi. z) and v; = (x;, ¥, Zi+1),
for these seven cases, the combination of two polygons is
similar to that of described in the first step, that is, any
two vertices that share edges with the common vertex
vi(z") are jointed by an edge if they are in the same plane.
The combination is also applied to polygons in the second,
the third, and the fourth quadrants of voxel v;, We now
describe the combinations of these seven cases in detail.

Case 3.1: Combine two triangles into a quadrangle.
This case is the same as Case 1.1.

Case 3.2: Combine a triangle and a quadrangle into
a pentagon. One example is the same as Case 2.2.
Another example is shown in Figure 6. In Figure 6(a),
for voxels v; and v, the guadrangle of v; and the triangle
of v,, have a common vertex vi(z*). Vertices v(z") and
vm(y") share edges with v(z") on the z-axis. Since vi(z")
and v,(y") are in the same plane (thé yz plane), edge
(i@, vy is added. Edge (v(z"), v.(x") is added as
well with a similar reason. As a result, a pentagon is
formed and is shown in Figure 6(b).

@ .

(2) (b)
Figure 6. An example of combining a triangle and a
quadrangle into a pentagon.

Case 3.3: Combine a triangle and a pentagon into a
hexagon. An example is shown in Figure 7. In Figure
7(a), for voxels v; and v, the pentagon of v; and the
triangle of v, have a common vertex w(zh). Vertices v,-(z*)
and v/(x") share edges with v(z") on the z-axis. Since
vi(z") and v{x") are in the same plane (the xz plane), edge
V{2, vAx") is added. Edge (vi(z"), vi(y") is added as
well with a similar reason. As a result, a hexagon is
formed and is shown in Figure 7(b). In this case, we
mark voxels that form the hexagon. In the given
example, voxels v;, v, v, and v, are marked for further
discussion later.

Figure 7. An example of combining a triangle and a
pentagon into a hexagon.

Case 3.4: Combine two quadrangles into a
quadrangle or none. An example of combining two
quadrangles into zero polygons is shown in Figure 8. In
Figure 8(a), for voxels v; and v,,, the quadrangle of v; and
the quadrangle of v,, have four common vertices v;(z"),
V2", vi(z"), and v(z"). After the combination, all of the
common vertices are disappeared. As a result, no
polygon is formed as shown in Figure 8(b).

309

Figure 8. An example of combining two quadrangles into
zero polygon.

An example of combining two quadrangles into a
quadrangle is shown in Figure 9. In Figure 9(a), for
voxels v; and v,,, the quadrangle of v; and the quadrangle
of v,, have a common vertex v,(z"). Vertices vi(z) and
vm(y") share edges with vi(z") on the z-axis. Since v(z")
and v,(y") are in the same plane (the yz plane), edge
(@), va(y) is added. Edge (v(z"), v.(y") is added as
well with a similar reason. As a result, a quadrangle is
formed and is shown in Figure 9(b).

Figure 9. An exampie of combining two quadrangles into
a quadrangle.

Case 3.5: Combine a quadrangle and a pentagon
into a triangle or a pentagon. An example of combining
a quadrangle and a pentagon into a triangle is shown in
Figure 10. In Figure 10(a), for voxels v; and v, the
pentagon of v; and the quadrangle of v, have a common
vertex vi(z"). Vertices vi(x") and v,(z) share edges with
vi(z") on the z-axis. Since v(x") and v,(z) are in the
same plane (the xz plane), edge (vi(x"), vy(z)) is added.
Edge (v(y"), v,(z)) is added as well with a similar reason.
As a result, a triangle is formed and is shown in Figure
10(b).

(a) (b)
Figure 10. An example of combining a pentagon and a
quadrangle into a triangle.

An example of combining a pentagon and a
quadrangle into a pentagon is shown in Figure 11. In
Figure 11(a), for voxels v; and v;, the pentagon of v; and
the quadrangle of v, have a common vertex vi{z).

Vertices v(z") and v(y") share edges with v(z') on the
z-axis. Since v(z") and v(y") are in the same plane (the
yz plane), edge (vi(z"), vi(y")) is added. Edge (v(y"),
va(y")) is added as well with a similar reason. As a
result, a pentagon is formed and is shown in Figure 11(b).

Figure 11. An example of combining a pentagon and a
quadrangle into a pentagon.

Case 3.6: Combine two pentagons into a quadrangle
or two friangles. An example of combining two
pentagons into a quadrangle is shown in Figure 12. In
Figure 12(a), for voxels v; and v, the pentagon of v; and
the pentagon of v, have a common vertex v(z"). Vertices
vilxh) and v,(x") share edges with v(z") on the z-axis.
Since v, (x") and v,(x") are in the same plane (the xz plane),
edge (vi(x"), v.(x") is added. Edge (vj(y"). v.(y") is
added as well with a similar reason. As a result, a
quadrangle is formed and is shown in Figure 12(b).

(b)
Figure 12. An example of combining two pentagons into
a quadrangle.

(b)
Figure 13. An example of combining two pentagons into
two triangles.

An example of combining two pentagons into two
triangles is shown in Figure 13. In Figure 13(a), for
voxels v, and v,, the pentagon of v; and the pentagon of v,
have two common vertices vi(z") and v,~(z*). Vertices
v(z") and v,(y) share edges with vi(z") in the z-axis.
Since v(z*) and v,(y") are in the same plane (the yz plane),
edge (v(zM, v(¥)) is added. Edges (vi(x"), v(2), (vi(z"),
vp(x)), and (v,(y*), v{(z)) are added as well with a similar

310

reason. As a result, two triangles are formed and are
shown in Figure 13(b).

Case 3.7: Combine a hexagon and a triangle into a
quadrangle and a triangle. An example is shown in
Figure 14. In Figure 14(a), for voxels v; and v,, the
pentagon of v; and the triangle of v, have a common
vertex vi(z"). Vertices vi(z") and v,(y") share edges with
vi(z") on the z-axis. Since v{z") and v,(y") are in the
same plane (the yz plane), edge (v(z"), v.(y)) is added.
The edge (v.(x"), vi(x")) is added as well with a similar
reason. Since vertices vu(x"), vy, v x), and v,(y)
form a quadrangle in a plane, a quadrangle and a triangle
are formed and are shown in Figure 14(b).

¥
fx

x
v)

x

(b)
Figure 14. An example of combining a hexagon and a
triangle into a triangle and a quadrangle.

(a)

The fourth step is to handle the exception. After
Steps 1-3 are performed, a possible incorrect case shown
in Figure 15(a) may be generated. 1In Figure 15(a), there
are a hexagon and a triangle in the same cube. The
correct surface configuration for the cube is shown in
Figure 15(b). The following exception handling is
required.

)

(a)
Figure 15. An example of combining a hexagon and a
triangle into three triangles.

Exception Case: For voxels marked in Case 3.3, if
there exists a triangle in the same cube as the hexagon
formed by the marked voxels, we combine the triangle
and the hexagon into three triangles. In Figure 15(a), v;,
vj, v, and v, are marked voxels and v,, is the voxel for the
triangle. Voxel v; is adjacent to v;, v, and v, To
combine the hexagon and the triangle into three triangles,
the vertex of the triangle on the x-axis is connected to the
two vertices in the yz plane of voxel v, Similarly, the
vertices of the triangle on the y-axis and z-axis are
connected to the two vertices in the xz plane and in the xy
plane of voxel v;, respectively. In our example, vertex
v(x) is connected to v{y") and v(z") to form two edges
Wnx), v and (vu(x), v(z)). Edges (vu(y),

VX)), (Va(¥), VAZD), V@), i), and (vp(2), vi(x™))
are added as well with a similar reason. As a result,
three triangles are formed and are shown in Figure 15(b).

The third phase of the marching voxels method is to
project the surface of an object to an image plane. In
this phase, we first use the linear interpolation method to
compute the colors of surfaces and use the Phong shaded
method [7] to produce smooth surfaces at the same time.
Then the smooth surfaces are projected to an image plane
and are displayed in a screen [25]. The algorithm of the
marching voxels method is given below.

Algorithm Marching_Voxels_Method(V) {

/* V is the volume dataset. */

/* The triangles generation phase */

1. Generate eight triangles. for each inner voxel vi=(x;, y;,
z;) of the volume dataset V;

/* The polygons combination phase: */

For every inner voxel vi=(x;, y;.. z;), combine polygons.
of v; in the first, the forth, the fifth, and the eighth.
quadrants. with its adjacent. inner voxel vi=(x+1. ¥, 2;)
according to Case 1.1;

3. For every inner voxel vi=(x;, ¥, z;), combine polygons
of v; in the first, the second, the seventh, and the
cighth quadrants with its adjacent inner voxel v,=(x;,
y+1, z;) according to Case 2.1 - Case 2.3;

4. For every inner voxel vi=(x;, y;, z;), combine polygons
of v; in the first, the second, the third. and the fourth
quadrants with its adjacent inner voxel v=(x;, i, z+1)
according to Case 3.1 — Case 3.7;

5. For the marked voxels in Case 3.3, perform the

exceplion case;
/* The surface projection phase */
6. Compute the color and shade the surfaces;
7. Project the surfaces into an image plane;

)
end_of_Marching_Voxels_Method

2.2 The analysis of the marching voxels method

In order to compare the marching voxels method
with the marching cubes method, we analyze the surface
configurations generated by the marching voxels method
in a cube according to the positions of inner voxels of the
cube. Given a cube with eight voxels, we have nine
combinations of inner voxels. Each combination may
have more than one inner voxel configuration. For each
inner voxel configuration, it may have more than one
cases according to the positions of inner voxels. In the
following, we give a general description for each
configuration.

Combination 0: Zero inner voxel and eight outer voxels.
We have one inner voxel configuration.
Combination 1: One inner voxel and seven outer voxels.

311

We have one inner voxel configuration.
Combination 2: Two inner voxels and six outer voxels.
We have two possible inner voxel configurations.

C2.1: Two inner voxels are adjacent.

C2.2: Two inner voxels are not adjacent.
Combination 3: Three inner voxels and five outer voxels.
We have three inner voxel configurations.

C3.1: Three inner voxels are not adjacent.

C3.2: Only two inner voxels are adjacent.

C3.3: Three inner voxels are connected.
Combination 4: Four inner voxels and four outer voxels.
We have five inner voxel configurations.

C4.1: Four inner voxels are not adjacent.

C4.2: Two pairs of inner voxels are adjacent.

C4.3: Only three inner voxels are connected.

C4.4: Four inner voxels are connected in a plane.

C4.5: Four inner voxels are connected but not in a
plane.

Combination. 5: Five inner voxels: and: three outer voxels.
We have three inner voxel configurations.

CS.1: Three outer voxels are. not adjacent.

C5.2: Only two outer voxels are adjacent.

C5.3: Three outer voxels are connected.
Combination 6: Six inner voxels and two outer voxels.
We have two inner voxel configurations.

C6.1: Two outer voxels are adjacent.

C6.2: Two outer voxels are not adjacent.
Combination 7: Seven inner voxels and one outer voxel.
We have one inner voxel configuration.

Combination 8: Eight inner voxels and zero outer voxel.
We have one inner voxel configuration.

The surface configurations generated for the inner
voxel configurations of these nine combinations by using
the marching voxels method are listed in Table 1. In
Table 1, the first column indicates the nine combinations
of inner voxels. The second column lists the inner voxel
configurations of the combinations of inner voxels. The
third column lists the surface configuration generated by
the marching voxels method for a given voxel
configuration of a combination. The fourth column
shows the generation steps of a surface configuration by
the marching voxels method. From Table 1, we can see
that all the surface configurations shown in Figure 1 can
be generated by the marching voxels method. 1In
addition, the surface configurations generated by the
marching voxels method are performed in a deterministic
way, that is, for a given case of inner voxel configuration
of a cube, the surface configuration generaled by the
marching voxels method is unique. The ambiguity and
holes generation problems of the marching cubes method
are eliminated in the marching voxels method.

Table 1: The surface configurations generated by the
marching voxels method.

Combi- Inner | The Surface
nation Voxel | Configuration The Generation Steps
Config-| Generated
uration
0 - Figure 1(a) Phase 1
1 - Figure 1(b) | Phase 1
C2.1 Figure 1(c)] Phase 1->Case 1.1
2 c2.2 Figure 1(d) | Phase 1
C2.2 Figure 1(k) | Phase 1
C3.1 Figure 1(m) | Phase 1
3 C3.2 Figure 1(I) | Phase 1—Case 1.1
C3.3 Figure 1(e) | Phase 1—Case 1.15Case 2.2
C4.1 Figure 1(h) | Phase 1
C4.2 Figure 1(n) | Phase 1—»Case 1.1
C4.3 Figure 1(g) | Phase 1->Case 1.1—Case 2.2
C4.4 Figure 1(f)] Phase 1—Case 1.1—Case 2.3
. . Phase 1—Case 1.1>Case 2.2—
4
C4.5 Figure 1(i) Case 3.3
. . Phase 1—»Case 1.1—Case 2.2—
Ca.5 Figure 1(j) Case 3.3
. Phase 1—Case 1.1—Case 2.2—
C4.5 Figure 1(0) Case 3.3
. Phase 1—Case 1.1—>Case 2.2—
e Figure 1(m) Case 3.3—Exception Case
Phase 1>Case 1.1»Case 2.2—
5 -
€52 Figure 1(1) Case 3.3—Case 3.7
. Phase 1->Case 1.1—Case 2.3—
C53 Figure 1(e) Case 3.2
- Phase 1-»Case 1.1 >Case 2.2—
C6.1 Figure 1(c) Case 3.6
y Phase 1—»Case 1.1—>Case 2.2—
6 C6.2 Figure 1(d) Case 3.6
: Phase 1—»Case 1.1—>Case 2.2—
C6.2 Figure 1(k) Case 3.6
. Phase 1-—»Case 1.1>Case 2.3—
7 - Figure 1(b) Case 3.5
- Phase 1-»Case 1.1—>Case 2.3—
8 - Figure 1(a) Case 3.4

3. Experimental results

To evaluate the performance of the marching voxels
method, we have implemented the marching voxels
method along with the marching cubes method on an IBM
RS6000 CPU. Three volume datasets are used to
evaluate the performance of the proposed surface
rendering methods. They are selected from the Chapel
Hill Volume Rendering Test Dataset. The first test
sample is a "brain" dataset generated from the MR scan of
a human head and the dimensions of the dataset is 128x
128 x 84. The second test sample is a CT "head" dataset
and the dimensions of the dataset is 256 x 256 x 225.
The third test sample is an "engine” dataset, which is the
CT scan of an engine block and the dimensions of the
dataset is 256x 256 x 110. Each image for the surface
rendering methods is grayscale color and contains 512 x
512 pixels. Figure 16 shows the surface rendering time

312

of the marching cubes and the marching voxels methods
for the test samples “brain”, “head”, and “engine” on the
IBM SP2 machine. In Figure 16, the performance
improvement of the marching voxels method over the
marching cubes method is also given. The performance
improvement of the marching voxels method over the
marching cubes method is defined as | _7v, where 7. and
Tc

T, are the surface rendering time of the marching cubes
method and the marching voxels method, respectively.
From Figure 16, we can see that the surface rendering
time of the marching voxels method is about 30% less
than that of the marching cubes method for test samples.

140 35%
I Marching Cubes
120 C—JMarching Voxels
~l— Improvement 33%(?
100 3,
|
350 | {2%
; a
5 .
g0 { 248

JURIIETNG?

8 8
N
2

=]

~
G
B

brain

R head engine
Number of processors

Figure 16: The total surface rendering time and the
performance improvement of the marching voxels method
over the marching cubes method for all test samples.

4. Conclusions

In this paper, we have proposed an efficient surface
extraction method, the marching voxcls method, for
surface rendering of volume data. The marching voxels
method first produces triangles for inner voxels. Then
polygons of voxels are combined according to the
common vertices of polygons. Finally, the surface of an
object is projected to a plane to form the final image.
Since the marching voxels method considers the
combination of triangles of voxels and the combination of
triangles is performed in a deterministic way, there is
neither ambiguous case of a combination nor holes for the
generated surface. To evaluate the performance of the
proposed method, we have implemented the method on an
IBM RS6000 CPU. Three volume datasets are used as
test samples. The experimental results show that the
marching voxels method saves about 30% of the surface
rendering time compared to the marching cubes method
for the test samples.

References

[1}] E Allamandn, P. Cignoni, C. Montani, and R. Scopigno,
“Reconstruction of Topologically Correct and Adaptive
Trilinear Iso-surfaces,” Computer & Graphics, Elsevier
Science B. V., 1999 (in press).

[2] Ruud M.. Bolle ad Baba C. Vemuri, "On
Three-Dimensional Surface Reconstruction Methods”,
1EEE Transactions on Pattern Analysis and Machine
Intelligence, vol 13, no 1, pp 1 - 13, January, 1991.

P. Cignoni, C. Montani, E. Puppo and R. Scopigno,

“Optimal Iso-surface Extraction from Irregular Volume

Data,” IEEE/ACM 1996 Symp. on Volume Visualization, S.

Francisco CA, ACM Press, 1996, pp.31-38.

Baldzs Csébfalvi, “Fast Volume Rotation Using Binary

Shear-Warp Factorization,” IEEE TCCG Symposium on

Visualization, Vienna, Austria, 1999.

A. Kaufman (Eds.), Volume Visualization, IEEE Computer

Society Press, 1991.

Philippe Lacroute, "Analysis of a Parallel Volume

Rendering System Based on the Shear-Warp Factorization,"

IEEE Transactions on Visualization and Computer

Graphics, vol. 2, no. 3, pp. 218-231, 1996.

Philippe Lacroute and Marc Lavoy, “Fast Volume

Rendering Using a Shear-Warp Factorization of the View

Transformation,” Computer Graphics (SIGGRAPH 94

Proceedings), pp. 451-457, 1994.

Marc Levoy, “Display of Surfaces from Volume Data,”

IEEE Computer Graphics and Applications, Vol. 8, No. 3,

May, 1988.

Jianping Lii. Pen Agathoklis, “An Efficiency Enhanced

Iso-surface Generation Algorithm for Volume

Visualization,” The Visual Computer, vol. 13, pp. 301-400,

1997.

(10] W.E. Lorensen, and H.E. Cline, "Marching Cubes: a high
resolution 3D surface reconstruction algorithm,"” Computer
Graphics, vol. 21, no. 4, pp 163-169 (Proc. of SIGGRAPH),
1987.

[11] C. Montani, R. Scateni, and R. Scopigno, “Decreasing
Iso-surface Complexity via Discrete Fitting,”
Computer-Aided Geometric Design, Elsevier Science, 1998
(in press).

[12) C. Montani, R. Scateni, and R. Scopigno, “Discretized
Marching Cubes,” In R.D. Bergeron and A.E. Kaufman,
editors, Visualization ‘94 Proceedings, pages 281-287.
IEEE Computer Society Press, 1994.

[13) C. Montani, R. Scateni, and R. Scopigno, “A modified
look-up table for implicit disambiguation of Marching
Cubes,” The Visual Computer, 10(6):353-355, 1994.

[14] C. Montani, and R. Scopigno, “Using Marching Cubes on

[3]

(51
(6]

{7

[8]

(9]

313

small machines,” CVIGP: Graphical Models and Image
Processing, 56(2):182-183, March 1994,

[15] C. Oblonsek and N. Guid, “A Fast Surface-Based Procedure
for Object Reconstruction from 3-D Scattered Points”,
Computer Vision and Image Understanding, vol. 69, no 2,
pp 185 — 195, February, 1998.

[16] S. Parker, et al, “Interactive Ray Tracing for Iso-surface
Rendering,” in Proceedings of Visualization '98, pages
233-238.

[17] Tim Poston, Tien-Tsin Wong, Pheng-Ann Heng,
“Multiresolution Iso-surface Extraction with Adaptive
Skeleton Climbing,” .

[18] Vaughan Pratt, "Direct Least-Squares Fitting of Algebraic
Surfaces”, Proceedings SIGGRAPH 87 - Computer
Graphics, pp 145-152, 1987.

[19] Raj Shekhar, Elias Fayyad, Roni Yagel, and Fredrick
Cronhill, "Octree-Based Decimation of Marching Cubes
Surfaces”.

[20}). Wilhems and A. Van Gelder, “Octree for faster
iso-surface generation,” ACM Transaction of Graphics,
pp201-227, vol. 11, 1992,

[21] R. Seidel. “A Simple and Fast Incremental Randomized
Algorithm for Computing Trapezoidal Decompositions and
Tortriangulating Polygons,” Computational Geometry:
Theory and Applications, pp. 51-64, 1991.

[22] Marc Soucy and Denis Laurendeau, "A General Surface
Approach to the Integration of a Set of Range Views”,
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol 17, no 4, pp 334 - 358, April, 1995.

[23] L. Westover, "Footprint Evaluation for Volume Rendering”,
Computer Graphics (In Proceedings of SIGGRAPH'90),
vol.24, pp. 367-376, Dallas, 1990.

[24]1). Wilhems and A. Van Gelder, “Octree for faster
iso-surface generation,” ACM Transaction of Graphics,
pp201-227, vol. 11, 1992.

[25} J. Wilhelms and A. Van Gelder, "A Coherent Projection
Approach for Direct Volume Rendering,” Computer
Graphics (In Proceedings of SIGGRAPH91), vol. 25, no. 4,
pp. 275-283, July 1991.

[26] C. Oblonsek and N. Guid, "A Fast Surface-Based Procedure
for Object Reconstruction from 3-D Scattered Points",
Computer Vision and Image Understanding, vol 69, no 2,
pp 185 — 195, February, 1998.

