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Abstract

The binary-swap and the parallel-pipelined methods
are two popular image composition methods for volume
rendering on distributed memory multicomputers.
However, these methods either restrict the number of
processors to a power of two or require many steps to
transform image data that results in high communication
overheads. In this paper, we present an efficient image
composition method, the rotate-tiling (RT), for parallel
volume rendering on distributed memory multicomputers.
The RT method can fully utilize all available processors
and minimize the communication overheads. In addition,
we provide a data compression method, the template
run-length encoding (TRLE), to further reduce the
communication data size. To evaluate the performance
of the RT method, we compare the proposed method with
the binary-swap method and the parallel-pipelined method.
Both theoretical analysis and experimental test are
conducted. In the theoretical analysis, we analyze the
best performance bound of the RT method in terms of the
startup time, the data transmission time, the number of
processors, and the number of initial block of a sub-image.
In the experimental test, we have implemented these three
methods on an SP2 parallel machine. Three volume
datasets are used as test samples. The experimental
results show that our method outperform the binary-swap
and the parallel-pipelined methods for all test samples and
match the results analyzed in the theoretical analysis.
For the TRLE method, the experimental results show that
the TRLE method can further reduce the composition
time for these three methods.

Index Terms: Image Composition, Volume Rendering,
Binary-Swap, Parallel-Pipelined, Run-Length Encoding,
Rotate-Tiling.

1. Introduction

Volume rendering [3-5] can be used to analyze the
shape and volumetric property of three-dimensional
objects in research areas such as medical imaging and
computational fluid dynamics. It can not only display
the semi-opaque object, but also provide a better
visualization of the object surface. However, most
volume rendering methods that produce effective
visualizations are computation intensive [12,14], and it is
very difficult to achieve interactive rendering rates for
large datasets. In addition, volume datasets are too large
to be stored in the memory of a single processor element.
One way to solve the above problems is to parallelize the
serial volume rendering techniques on distributed memory
multicomputers [21-26].

A parallel volume rendering system on distributed
memory multicomputers, in general, consists of three
stages, the data partitioning stage, the rendering stage, and
the image composition stage. In the data partitioning
stage, an efficient partitioning method can be used to
distribute the volume dataset to processors. In the
rendering stage, each processor uses a serial rendering
algorithm to generate a partial image. In the image
composition stage, the partial intermediate images of
processors are composited to form a final image. When
the number of processors is large, the image composition
stage becomes a bottleneck of a parallel volume rendering
system. Hence, a good image composition method is
very important to the performance of a parallel volume
rendering system.

In general, there are two ways to improve the
performance of the image composition for volume
rendering on distributed memory multicomputers. One
is to use an efficient communication scheme to send and
receive the partial intermediate images of processors such
that the communication overheads can be minimized.
The other is to use an efficient data compression method
to reduce the communication data size. These methods
not only reduce the communication time, but also
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minimize the computation time for the image
composition.

For the communication scheme, the binary-swap
(BS) method proposed by Ma et al. [16-17] is a
well-known divide-and-conquer algorithm. The key
idea of the binary-swap method is that in each
communication step, two processors are paired to
exchange half of their sub-images and to composite
sub-images they received. After Plog communication
steps, each processor contains a portion of the final image,
where P is the number of processors. The final image
then can be obtained by gathering each potion of the final
image from processors. The advantage of this method is
that it enables more parallelism in the image composition
stage, and keeps all processors busy in all communication
steps of the image composition process. However, this
method can be only implemented when the number of
processors is a power of two.

The parallel-pipelined (PP) method proposed by
Lee [13] is another composition method. In the PP
method, the sub-image owned by each processor is first
divided into P blocks, where P is the number of
processors. The topology of processors is treated as a
ring. In each communication step, a processor sends one
block to its next processor and receives a block from its
previous processor. The block received by each
processor is then composited using “over” operation.
After P−1 communication steps, each processor holds one
block of the final image. The final image then can be
obtained by gathering each block of the final image from
processors. The advantage of the PP method is that it
can be implemented with arbitrary number of processors.
The disadvantage is that each processor needs P−1
communication steps to perform the image composition.
When P is large, the communication overhead is high.

In the image composition stage, the size of a
partitioned sub-image and the number of communication
steps affect the composition time. The binary-swap
method and the parallel-pipelined method used a fixed
way to set these two parameters. They did not optimize
these two parameters. In this paper, we present an
efficient method, the rotate-tiling (RT), to address this
issue. Given P processors, in the RT method, a
sub-image owned by a processor can be divided into N
blocks initially, where N = 1, …, P. In each
communication step, a processor sends (receives) some
blocks to (from) other processors according to a
mathematical formula. After the send and receive
operations, each processor uses “over” operation to
composite blocks it received. Then each block in a
processor is divided into two equal halves. Continue the
above process, after  Plog communication steps, each

processor contains a block of the final image. The final
image then can be obtained by gathering each block of the
final image from processors. The only restriction of the

RT method is that the value of P×N is even. According
to the values of P and N, the RT method can be divided
into two categories, the 2N_RT method for arbitrary
number of processors and the N_RT method for even
number of processors. In the RT method, different
values of N lead to different performance. To analyze
the effect of N in the RT method, the composition time is
parameterized by the number of processors, the number of
initial blocks of a sub-image, the startup time, and the
data transmission time. By fixing the number of
processors, we can determine the value of N that has the
best performance.

Many data compression methods were proposed to
reduce the image composition time of a volume rendering
system on distributed memory multicomputers [1, 11, 13,
16]. Ma et al. [16] suggested using a bounding rectangle
of non-blank pixels for each image and only compositing
the pixels within the intersection of the bounding
rectangles. Lee [13] used the bounding rectangle of a
parallel-pipelined composition algorithm. Using the
bounding rectangle method, the performance of test data
can have 20 to 50 percent improvement. Lacroute and
Levoy [1, 11] used the run-length encoding method for a
serial volume renderer and promoted the run-length
encoding as a general technique applicable to many
parallel image composition algorithms. It is suitable for
monochrome images. For a gray color image, the
compression ratio of the run-length encoding method is
low since a gray color image contains many colors. To
increase the compression ratio of a gray color image, we
propose another data compression method, the template
run-length encoding (TRLE). In TRLE method, it uses 16
templates to encode 2×2 pixels. The TRLE codes are used
to encode sub-images. A TRLE code is one byte long.
The lower four bits of a TRLE code is represented as the
template of four pixels. The upper four bits of a TRLE
code is represented as the copies of the same template.
A bit operation is used to encode and decode the TRLE
codes. Hence, the TRLE compression method is easy to
be implemented and has a high compression ratio.

To evaluate the performance of the RT method, we
compare the proposed method with the binary-swap
method and the parallel-pipelined method. Both
theoretical analysis and experimental test are conducted.
In the theoretical analysis, we analyze the best
performance bound of the RT method in terms of the
startup time, the data transmission time, the number of
processors, and the number of initial block of a sub-image.
In the experimental test, we have implemented these
threes methods on an SP2 parallel machine. Three
volume datasets are used as test samples. The
experimental results show that our method outperform the
binary-swap and the parallel-pipelined methods for all test
samples and match the results analyzed in the theoretical
analysis. For the TRLE method, the experimental results
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show that the TRLE method can further reduce the
composition time for these three methods.

The rest of the paper is organized as follows. In
Section 2, we present and analyze the RT method for the
image composition of volume rendering. We introduce
the TRLE data compression method in Section 3. In
Section 4, we compare the performance of the proposed
composition method with the binary-swap and
parallel-pipelined composition method on an SP2 parallel
machine. We also evaluate the performance of these
three methods with the TRLE method.

2. The RT method for the image composition
of volume rendering

According to the number of processors (P) and the
number of initial blocks (N) of a sub-image, the RT
method can be classified into two cases. One is the 2N
rotate-titling (2N_RT) method for arbitrary number of
processors. The other is the N rotate-tiling (N_RT)
method for even number of processors. If the number of
processors and the number of initial blocks of a
sub-image are odd, the RT method cannot be applied. In
the following, we describe the proposed method and
analyze the communication and computation costs of the
proposed method along with the binary-swap and the
parallel-pipelined methods.

2.1 The 2N rotate-tiling (2N_RT) method for any
number of processors

In this case, the number of processors (P) can be an
arbitrary positive integer and the number of initial blocks
of a sub-image (2N) is even. To composite sub-images
of processors to form a final image, in the 2N_RT method,
each sub-image in a processor is first partitioned into 2N
blocks with equal size. Processors, then, send and
receive blocks to and from other processors according to
the send-receive equations as given in Equations (1) and
(2). Once a processor sent and received blocks, it
composites the received blocks. After the composition,
it divides each block into two equal halves and repeats the
send and receive blocks process until the final image is
composited. In the following, we assume that, in the kth
communication step, Pr sends block )(mAk

r to Pi and

receives block )(nAk
j from Pj, where r, i, and j are

processor ranks; k is a positive integer; and m, n are block
numbers. The send equation is given below,
Pr( )(mAk

r )→ Pi, where








=+++=
=−−−×=

−=

− .2/...,,2,1for,2mod)21(
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NlPkrlPi

Pr

lk

(1)

The receive equation is given below,

Pr ← Pj( )(nAk
j ), where 






=++=
=+−−×=

−=

− .2/...,,2,1for,2mod)2(

,2/...,,2,1for,mod|1|

,1...,,1,0
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(2)

The algorithm of the 2N_RT method is given as follows.
_____________________________________________

Algorithm 2N_Rotate-Tiling_Method(P, A, N)
/* P is the number of processors. */
/* A is the initial image of each processor. */
/* N is the even number of partitions of an image. */
1. Each processor partitions its sub-image A into N
blocks;
2. for k = 1 to  Plog do {

3. for each processor Pr do parallel {
4. Pr sends block )(mAk

r to Pi using Equation (1);
5. Pr receives block )(nAk

j from Pj using Equation (2);

6. Pr composites the received )(nAk

j with its local

block )(nAk

r ;
7. }
8. Divide each block into two equal halves;
9. }
end_of_2N_Rotate-Tiling_Method
_____________________________________________
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Figure 1: Example of the 2N_RT method using three
processors and N = 4.

An example is given in Figure 1 to illustrate the
2N_RT method using three processors and four initial
blocks. In Figure 1, there are  Plog =  3log = 2

communication steps. In the first communication step,
according to Equations (1) and (2), P0 sends )2(1

0A to P2

and receives blocks )0(1
1A and )3(1

1A from P1, P1 sends
blocks )0(1

1A and )3(1
1A to P0 and receives block )1(1

2A from P2,
and P2 sends block )1(1

2A to P1 and receives block )2(1
0A

from P0. After blocks were received, each processor
uses the “over” operation to composite the received
blocks with its local blocks. For example, P0 composites
received blocks )0(1

1A and )3(1
1A with its local blocks )0(1

0A
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and )3(1
0A , respectively. Then each block in a processor

is divided into two equal halves. In the given example,
each processor contains 8 blocks now.

In the second communication step, a similar process
performed in the first communication step is continuing.
After performing the second communication step, blocks

)0(2
0A , )2(2

0A and )6(2
0A in P0, blocks )3(2

1A and

)4(2
1A in P1, and blocks )1(2

2A , )5(2
2A and )7(2

2A in P2

form the final image. P0 uses the “gather” operation to
collect these blocks to get the final image.

2.2 The N rotate-tiling (N_RT) method for the
even number of processors

In this case, the number of processors (P) is even
and the number of initial blocks of a sub-image (N) can be
an arbitrary positive integer. To composite sub-images
of processors to form a final image, in the N_RT method,
each sub-image in a processor is first partitioned into N
blocks with equal size. Processors, then, send and
receive blocks to and from other processors according to
the send-receive equations shown in Equations (3) and (4).
Once a processor sent and received blocks, it composites
the received blocks. After the composition, it divides
each block into two equal halves and repeats the send and
receive blocks process until the final image is composited.
In the following, we assume that, in the kth
communication step, Pr sends block )(mAk

r to Pi and
receives block )(nAk

j from Pj, where r, i, and j are

processor ranks; k is a positive integer; and m, n are block
numbers. The send equation is given below,

Pr( )(mAk

r ) → Pi, where








=−×=
=−−×=

−=

....,,2,1for,12

,...,,2,1for,mod)(

,1...,,1,0

Nllm

NlPkrlPi

Pr (3)

The receive equation is given below,
Pr ← Pj( )(nAk

j ), where








=−×=
=++×=

−=

....,,2,1for),1(2

,...,,2,1for,mod)(

,1...,,1,0

Nlln

NlPkrlPj

Pr (4)

The algorithm of the N_RT method is given as follows.
_____________________________________________

Algorithm N_Rotate-Tiling_Method(P, A, N)
/* P is the even number of processors. */
/* A is the initial image of each processor. */
/* N is the number of partitions of an image. */
1. Each processor partitions its sub-image A into N
blocks;
2. for k = 1 to  Plog do {

3. for each processor Pr do parallel {
4. Pr sends block )(mAk

r to Pi using Equation (3);
5. Pr receives block )(nAk

j from Pj using Equation (4);

6. Pr composites the received )(nAk

j with its local

block )(nAk

r ;
7. }

8. Divide each block into two equal halves;
9. }
end_of_N_Rotate-Tiling_Method
_____________________________________________
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Figure 2: Example of the N_RT method using four
processors and N = 3.

Figure 2 illustrates the N_RT method using four
processors and three initial blocks. The description for
Figure 2 is similar to that of Figure 1 except that the
N_RT method uses Equations (3) and (4) to determine the
send and receive processors and blocks.

2.3 Theoretical analysis of the RT and other
composition methods

In this subsection, we first derive the theoretical
performance of the BS, PP, and RT methods. Then, we
analyze the effect of the number of initial blocks for the
RT method. A summary of the notations used in this
theoretical analysis is given below.
z Tcomm(M) – The total communication time of method M.
z Tcomp(M) – The total computation time (over operation)

of method M.
z Ts – The startup time of a communication channel.
z Tp – The data transmission time per byte.
z To – The computation time of the “over” operation per

pixel.
z P – The number of processors.
z A – The image size in pixels.
z Ak(M) –The block size in pixels of the k-th

communication steps of method M.
z S(M) – The number of communication steps of method

M.
z N – The number of initial blocks of a sub-image.

We summarize the number of communication steps,
the block sizes sent or received by a processor in each
communication step, the total computation time, and
the total communication time in Table 1.
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Table 1: The theoretical performance comparisons.
M S(M) Ak(M) Tcomm Tcomp
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The composition time of the 2N_RT method T2N_RT

is the sum of Tcomm(2N_RT) and Tcomp(2N_RT), that is,

TN_RT =  P

s NT log⋅ +  PTT
N

A
op log( ⋅+ ×  )))

2

1
(1( log P− ×

 ))
2

1
(1( log P− . The composition time is parameterized by

the number of processors, the number of initial blocks of
a sub-image, the startup time, and the data transmission
time. To find the performance bound of N, we compare
the composition time when the numbers of initial blocks
are 2N and 2(N+1), respectively. Let T2N_RT(2N) and
T2N_RT(2(N+1)) represent the composition time when the
numbers of initial blocks are 2N and 2(N+1), respectively.

We have T2N_RT(2N) =  P
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By using the following equation, we can determine the
performance bound of N,
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For example, assume that the values of P, Ts, Tp,
and To are 32, 0.005, 0.00004, and 0.0002, respectively.
According to Equation (5), the performance bound of N is
4.3. It means that when N is equal to 4.3, the 2N_RT
method can produce the best performance than other
values of N. Since N must be an even number, N is
equal to 4 for this example.

In the N_RT method, to find the performance bound
of N, we compare the composition time when the numbers
of initial blocks are N and N+1, respectively. Let

TN_RT(N) and TN_RT(N+1) represent the composition time
when the numbers of initial blocks are N and N+1,
respectively. We have TN_RT(N) =  P
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equation, we can determine the performance bound of N,
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For example, assume that the values of P, Ts, Tp,
and To are 32, 0.005, 0.00004, and 0.0002, respectively.
According to Equation (6), the performance bound of N is
3.4. It means that when N is equal to 3.4, the N_RT
method can produce the best performance than other
values of N. Since N � 1, N is equal to 3 for this
example.

3. The TRLE compression Method

Data compression is another way to reduce the
communication time for the image composition of volume
rendering. To couple a composition method with an
efficient data compression method, the performance of a
composition method can be further enhanced. However,
data compression requires extra computation. The less
time a data compression scheme takes, the better the
performance. In the following, we introduce the
proposed data compression method in detail.

The run-length encoding (RLE) method is a
compression technique that reduces file sizes, especially
for black-and-white images. In the RLE method, it uses
a single character to represent continuous pixels with the
same color (black or white). The more runs there are
and the longer the run sequence, the greater the
compression. However, in gray images, the run-length
encoding is not efficient since the pixels’ values are more
varied.

For this reason, we propose another data
compression method, the template run-length encoding
(TRLE) method, to efficiently compress gray images. In
the TRLE method, we use templates to encode data. A
template is a 2×2 pixels. There are total 16 templates
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used in the TRLE method and their corresponding codes
are given in Figure 3. In the TRLE method, a gray
image is represented by TRLE codes. The lower four
bits of a TRLE code represent the code of a template.
The higher four bits of a TRLE code represent the number
of times of the same template replication. The maximal
number of the replication template can be represented in a
TRLE code is 16. Since the TRLE method uses the
lower four bits to indicate the templates, the TRLE codes
can be easily construct by the bit operation. As a result,
the TRLE method is more efficient since it requires less
computation time.

Template
Binary
code

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Template
Binary
code

Template
Binary
code

Template
Binary
code

Figure 3: The codes of templates.

We now give an example to compare the
compression ratio of the RLE method and the TRLE
method. Figure 4 illustrates two scanlines with
twenty-four pixels. If the RLE method is used, the RLE
code for the first scanline is 121113111, and 121112211
for the second scanline. The total size of the RLE codes
is 18 bytes. If we use the TRLE method, the TRLE
codes for the scanlines are 5 26 15 8 10. The total size
of the TRLE codes is 5 bytes. In this example, the
compression ratio of the RLE method and the TRLE
method is 18:5. The TRLE method results in a better
compression ratio than the RLE method.

121113111

121112211

00000101 00011010 000011110000100000001010

RLE code

TRLE code� �� �� � ��

Figure 4: An example of the RLE and TRLE methods.

4. Experimental results

To evaluate the performance of the RT method, we
have implemented the RT method along with the BS
method and the PP method on an SP2 parallel machine [6].
The SP2 parallel machine is located at the National
Center of High Performance Computing (NCHC) in
Taiwan. This super-scalar architecture uses an IBM
RISC System/6000 POWER2 CPU with a clock rate of
66.7 MHz. There are 40 IBM POWER2 nodes in this

system, and each node has a 128KB first-level data cache,
a 32KB first-level instruction cache, and 128MB of
memory space. Each node is connected to a low-latency,
high-bandwidth interconnection network called the High
Performance Switch (HPS).

The volume rendering system consists of three main
stages: the data partitioning stage, the rendering stage, and
the image composition stage. To implement these
composition methods, in the data partitioning stage, we
use the efficient 1-D and 2-D partitioning schemes [15] to
distribute the volume dataset to processors. In the render
stage, each processor uses the shear-warp factorization
[11] to generate a partial image. In the image
composition stage, the partial images are composited
using these composition methods to form a final image.

Three volume datasets are used to evaluate the
performance of these composition methods. They are
selected from the Chapel Hill Volume Rendering Test
Dataset [11]. The first test sample is an "engine" dataset,
which is the CT scan of an engine block. The second
test sample is a "brain" dataset generated from the MR
scan of a human head. The third test sample is a CT
"head" dataset. Each image is grayscale and contains
512 × 512 pixels.

4.1 Performance comparisons of three
composition methods

In this section, we first evaluate the performance of
the RT method. Then we compare the performance of
the RT method with the BS method and the PP method.
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(a) The N_RT method (b) The 2N_RT method
Figure 5: The theoretical and the experimental
composition time of the N_RT and the 2N_RT methods
for test sample “engine” with various numbers of
initial blocks of a sub-image on 32 processors.

Figure 5(a) and Figure 5(b) show the theoretical and
the experimental composition time of the N_RT and the
2N_RT methods for test sample “engine” with various
numbers of initial blocks of a sub-image on 32 processors,
respectively. From Figure 5(a), we can see that the
theoretical performance is close to the experimental
performance. Therefore, the theoretical analysis
matches the experimental analysis for the test sample. In
Figure 5(a), when the number of initial blocks is equal to
3, the N_RT method can produce the best theoretical and
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experiment performance for the test sample. For the
performance of the 2N_RT method illustrated in Figure
5(b), we have similar observations as those of the N_RT
method and when the number of initial block is equal to 4,
the 2N_RT method can produce the best theoretical and
experiment performance for the test sample. For test
samples “head” and “brain”, we have similar results.

According to the results shown in Figure 5, Figure 6
shows the theoretical and the experimental composition
time of the BS, PP, 2N_RT and N_RT methods for test
sample “engine” on 32 processors. The numbers of
initial blocks of the 2N_RT and N_RT methods are 4 and
3, respectively. From Figure 6, we observe that the
N_RT method has much better performance than the BS
and PP methods. The reason is that the N_RT method
can find the best performance point (N = 3) for the startup
time, the data transmission time, and the computation
time. In the BS method, it minimizes the startup time,
but do not reduce the data transmission time and the
computation time. For the PP method, it decreases the
data transmission time and the computation time, but do
not reduce the startup time. The performance of the
N_RT method is slightly better than that of the 2N_RT
method. The reason is that when the number of
processors is even, the best performance point found by
the N_RT method is more accurate than that of the 2N_RT
method because the numbers of initial blocks used by the
N_RT method and the 2N_RT method can be an arbitrary
number and an even number, respectively. For test
samples “head” and “brain”, we have similar observations
for these four methods.
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Figure 6: The theoretical and the experimental
composition time of the BS, PP, 2N_RT, and N_RT
methods for test sample “engine” on 32 processors.
The numbers of initial blocks of the 2N_RT and N_RT
methods are 4 and 3, respectively.

4.2 Performance improvements of the
composition methods with TRLE

Figure 7(a) and Figure 7(b) show the theoretical and
the experimental composition time of the N_RT and the
2N_RT methods with and without TRLE method for test

sample “engine” for various numbers of initial blocks of a
sub-image on 32 processors, respectively. In Figure 7(a),
when the number of initial blocks is equal to 3, the N_RT
method with TRLE method can produce the best
performance for the test sample. For the performance of
the 2N_RT method illustrated in Figure 7(b), we have the
best performance for the test sample when the number of
initial blocks is equal to 4. From Figure 7, we can see
that the TRLE method did improve the performance of
the RT method a lot. For test samples “head” and
“brain”, we have similar results.

Figure 8 shows the theoretical and the experimental
composition time of the BS, PP, 2N_RT and N_RT
methods with and without the RLE method and the TRLE
method for test sample “engine” on 32 processors. The
numbers of initial blocks of the 2N_RT and N_RT
methods are 4 and 3, respectively. From Figure 8, we
can see that both the TRLE method and the RLE method
can reduce the composition time for the BS, PP, 2N_RT
and N_RT methods. However, the composition methods
with the TRLE method have better performance than the
methods with the RLE method. For test samples “head”
and “brain”, we have similar observations.
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2N_RT and N_RT methods are 4 and 3, respectively.
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5. Conclusions

In this paper, we have proposed an efficient method,
the rotate-tiling (RT) method, for the image composition
of volume rendering on distributed memory
multicomputers. According to the number of processors
and the number of initial blocks of a sub-image, the RT
method can be classified into two categories, the 2N_RT
method for arbitrary number of processors and the N_RT
method for even number of processors. We also devised
a data compression method, the template run length
encoding (TRLE) method, to improve the performance
further. The proposed methods have been implemented
on an IBM SP2 machine along with the binary-swap and
the parallel-pipelined methods for performance evaluation.
Both theoretical analysis and experimental test were
conducted. The performance results show that the RT
method has better performance than that of the
binary-swap and parallel-pipelined methods. The
experimental results also show that a composition method
with the TRLE method can produce better performance
than that without the TRLE method.
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